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Abstract - Device characteristics fluctuation due to 

discrete dopant distribution is one of the serious 

problems for future device scaling. We have evaluated 

the potential field on the substrate by applying 2D FFT. 

It is found that specific wave length range, 20 nm to 25 

nm, is dominant to device characteristics. Moreover, if 

device size scales less than this specific wave length, there 

will be size effect caused by local potential fluctuation. 

 

 

I. INTRODUCTION 

 

Device characteristics fluctuation induced by random 

dopant distribution has been investigated using combination 

of Synopsys Taurus Process Atomistic simulator[1] and 

SELETE HyDeLEOS device simulator[2]. 2D FFT is 

applied to the doping concentration and potential fields at the 

Si surface to characterize the fluctuations. It is found that the 

larger fluctuation will be predicted among transistors when 

device size becomes smaller than specific the wave length 

determined by spatial potential fluctuations.  

 

 

II. FLUCTUATION INDUCED BY DISCRETE DOPANT 

DISTRIBTUTION 

 

Fig. 1 shows the simulation procedure and device 

structure. Initial boron is given at constant concentration in 

the substrate. After annealing, boron field is converted to 

discrete atomistic distribution by DADOS. As dopant 

distribution in the substrate is dominant to device 

characteristics fluctuation in our preliminary works, all 

dopant profiles are the same except for substrate, in which 

dopant distribution is atomistically simulated. 

 
• Process Simulator

– TAURUS Process Atomistic

– Initial boron distribution
• Uniform

– Anneal
• Kinetic Monte Carlo

• DADOS integrated into TPA

– Discrete Boron distribution

• Device Simulator
– SELETE HyDeLEOS

– Drift diffusion 

– Long-range part of Coulomb 
potential
• Sano model
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Fig. 1: Simulation procedure and device structure. 

 

After process simulation, atomistic boron positions are 

applied to drift diffusion device simulator, in which Sano 

model[3] is used for the long-range part of Coulomb 

potential of individual impurities.  

Table 1 is the summary of target device parameters for 

scaling nMOSFETs, where Na is the acceptor concentration 

in the substrate. 

 

Table 1: Target parameters for scaling nMOSFETs. 
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Fig. 2: σVth vs. dimensionless size factor with scaling. 

 

Fig. 2 shows the relation between calculated and reported 

[4][5] σVth and dimensionless size factor LWTox , which 

reflects the degree of geometrical scaling. Because vertical 

scaling is behind horizontal scaling, dimensionless size 

factors are increased with scaling.  

As for the slope between the plot and the origin, it is a 

concentration factor, which represents the contribution of 

concentration Na to σVth. Generally, the slope is considered 

to get steeper with increasing Na. But all our results for these 

roadmap parameters are on the same line even though each 

impurity concentration is different. However, we got the 

same results with others when Na is decreased to 10
18 cm-3 as 

is not shown in this figure. This means that the concentration 

effect becomes saturated over 5 x 1018 cm-3.  

We have extended scaling parameters to make sure if the 

concentration factor actually saturates with other parameters. 

Fig. 3 shows the response surface for the slope, in which 

F(Na) is calculated from σVth divided by the dimensionless 

size factor for each technology node and acceptor 

concentration Na. 
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The surface is mildly curved at lower Na but getting evener 

at higher Na not only along the roadmap parameters but also 

with other parameters.  

Fig. 3: Response surface of the concentration factor with 

various target parameters. 

 

 

III. POWER SPECTRUM ANALYSIS  

 

It is greatly helpful to characterize dopant distribution or 

potential field by the spatial frequency space because spatial 

frequency space is closely related with real space (Table 2). 

There is only 2D random noise observed for phase angle in 

spatial frequency space because discrete dopant is randomly 

and disorderly distributed. Its effect is considered to be the 

same level as baseline noise for all calculations. Therefore, 

only power is discussed in this work although phase angle is 

also important. 

 

Table 2: Correspondence between real space and spatial 

frequency space. 
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Fig. 4: Application of 2D FFT to f(x,y) and transformation to 

1D power spectrum. 

 

Fig. 4 shows the schematic procedure to apply FFT.  

F(u,v) is calculated by 2D FFT against 2D function f(x,y), 

which corresponds to concentration or potential field. 

Power P(u,v) is defined as the square norm of the complex 

function of F(u,v), where Fr(u,v) and Fi(u,v) represent the 

real and imaginary part of F(u,v) respectively.  

Because P(u,v) is a 2D function in spatial frequency space, 

it is still difficult to compare or characterize it directly. 

Therefore, P(u,v) is transformed to 1D power spectrum Q(f) 

by integrating P(f,θ) along all circumferences. 1D power 

Q(f) represents the contribution of each spatial frequency. 

Moreover, the slope characterizes the degree of the 

fluctuation. 
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Fig. 5: 1D power spectrum for acceptor concentration field 

(a) and potential field (b) at the Si surface. 

 

Fig. 5 (a) shows power spectrum for acceptor 

concentration field. Power is also observed to be saturated at 

higher acceptor concentration, which is similar in Fig. 2 and 

Fig. 3. Fig. 5 (b) shows the case of the potential field.  

Both fields obey the 1/f2-rule generally because these fields 

are calculated from the second order of PDE for diffusion or 

potential. However, there is less noise in potential field than 

in concentration field. In potential field, high spatial 

frequency wave is eliminated from concentration field by 

solving the Poisson equation because the radius of the 

long-range part of Coulomb potential by an acceptor has 
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wider distribution than that of concentration, as is discussed 

later.  

There is almost no concentration dependence among 

potential fields except for the specific frequency range of 

5/100 nm-1 to 4/100 nm-1. This spatial frequency range 

corresponds to the wave length of 20 nm to 25 nm. 

 

 

IV. POTENTIAL FIELD WITH SPECIFIC WAVE 

LENGTH RANGE 

 

There are two reasons why FFT is adopted to characterize 

fluctuation. One reason is to find what wave length range 

characterizes the fluctuation and the other reason is to 

reconstruct the original field with the specific wave length 

range by applying FFT using a window function. 

Fig 6 (a) shows the original surface potential field with 

random dopant distribution. Fig. 6 (b) shows the 

reconstructed potential field by inverse FFT with waves 

above 20 nm wave length only. 
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Fig. 6: Original surface potential field and reconstructed 

field by inverse FFT with waves above 20 nm wave length. 

 

Comparing Fig. 6 (a) with Fig. 6 (b), the original potential 

field is almost reconstructed and the specific wave length 

takes a dominant role in fluctuation of Vth. Moreover, the 

Poisson equation behaves as a low-pass filter for 

concentration field because potential filed doesn’t reflect the 

long-range part of individual impurities. Fig. 7 (a) shows 

relative acceptor concentrations for the long-range part of 

Sano model by an acceptor at the origin. Fig. 7 (b) shows the 

case of potential field. As Na is increased, the relative 

acceptor concentration increases but the radius shrinks 

gradually. However, as for potential field, the peak value at 

the origin goes down but the radius stays almost constant in 

contrast to the concentration field. 

Because potential field is described by overlapping these 

single waves, specific wave length is observed by Fourier 

analysis, whose range corresponds to the wave length of 20 

nm to 25 nm. 
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Fig. 7: Relative acceptor concentration (a) and its potential 

field (b) by an acceptor at the origin. 

 

 

V. DISCUSSION 

 

Assuming that the specific wave length in the potential 

field, there will be a new fluctuation caused by size effect 

between wave length and device size (Fig. 8).The potential 

field is fluctuated within a device for large scale devices. 

Scaling the device size, if Na in the substrate is increased 

accordingly, potential is still averaged within a device 

(Center). But if the device size becomes smaller than 

specific wave length of 20 nm to 25 nm, the fluctuation is 

determined by the local potential field directly (Right). In 

such case, the frequency of Vth distribution will obey 
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Poisson distribution rather than symmetric normal 

distribution. Moreover, this will cause a fundamental 

problem to engineers in designing circuits with conventional 

3σ criteria because Poisson distribution has broader 

distribution even if σ is the same level with that of normal 

distribution.  

Geometry scaling is aggressive, while electrical properties, 

such as unit charge, dielectric, long-range part of Coulomb 

potential and so on, are kept almost constant. This unbalance 

for scaling causes the size effect.  
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Fig. 8: Size effect by relative relation between device size 

and wave length of the potential fluctuation. 
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Fig. 9: Scaling rules and maximum potential difference in a 

device. 
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Fig. 10: Histogram of Vth Frequency distribution at 32 nm 

node with narrowing device. 

Fig. 9 shows scaling rules to see the size effect and 

maximum potential difference in a device. There is a 

remarkable jump at 32 nm node with narrowing width. 

Fig. 10 is the frequency of Vth distribution at 32 nm node 

for various device widths. Distribution is getting broader and 

lower with narrowing device.  

Fig. 11 shows “normal probability plot”, in which narrower 

width’s curve deviates from others and it is the proof of 

departing from symmetric normal distribution.  This means 

the increase of fluctuation should be notified because of the 

broader distribution tail due to Poisson distribution. 
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Fig. 11: Normal probability plot of σVth at 32 nm node with 

narrowing device. 

 

 

VI. CONCLUSION 

 

We have evaluated the device characteristics fluctuation 

against the technology roadmap. Absolute value of the 

fluctuation will be increased with scaling but concentration 

factor will be saturated for high acceptor concentration over 

5 x 1018 cm-3. Fourier analysis shows that power of spatial 

frequency generally obeys the 1/f2-rule and concentration 

dependence is less sensitive in potential filed than in 

concentration field. 

This work suggests that it becomes hard to fabricate 

hundreds million transistors with uniform characteristics in a 

chip if device size is close to the specific wave length, 20 nm 

to 25nm, of the potential fluctuation especially. 
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