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Abstract – We describe a formulation of quantum
electron transport in small devices based on the Master
equation. We sketch its derivation from the Liouville-von
Neumann equation, especially alluding to the subtle issues
related to irreversibility. We compare this approach to al-
ternative formulations of quantum transport and present
results regarding ballistic and dissipative transport in
double gate Si FETs.

I. INTRODUCTION

The term “quantum transport” of charge-carriers in semi-
conductor devices addresses several different non-classical is-
sues: Coherence and finite-collision-duration effects at short
times[1], quasi-ballistic transport at low temperatures[2],
high-field effects[3], such as intracollisional-field and colli-
sional broadening corrections, or size-quantization (quantum
confinement) effects[4]. Arguably, the latter corrections rep-
resent the effects most important to the study of devices at the
nanometer length scale, since they imply large corrections to
the ‘semiclassical’ electrostatics and to the conventional pic-
ture of carrier transport based on the Boltzmann Transport
Equation (BTE). Within the framework of the BTE the scat-
tering dephasing length, λφ, is considered to be much smaller
than the size, L, of the ‘active’ region (e.g. channel, barrier
regions) of the device. Moreover, the scattering-induced en-
ergetic broadening, δE ∼ h̄υ/λφ (where υ is some group
velocity and h̄ the reduced Planck constant), is assumed to be
much smaller than all other energy scales of the system. The
end result of these assumptions is the possibility of charac-
terizing the electronic wave-packets by specifying only their
central position and momentum, as in a classical picture.

Here we review an approach to quantum transport which
is both parallel and complementary to the BTE picture. We
start from the density-matrix (ρ) formulation of transport and
make use of Van Hove’s observation[5] that most interactions
of interest are ‘self-averaging’ because of the large number of
degrees of freedom (phonons, electron-electron) or configu-
rations (ionized impurities)[6] involved in the process. Thus,
whenever carriers are injected from reservoirs (contacts) char-
acterized by a dephasing length larger than the size of the de-
vice, λφ >> L, a suitable set of basis-functions – namely, the
propagating eigenmodes, {ψµ}, of the device, instead of the

‡A similar version of this work – performed at the IBM T. J. Watson Re-
search Center, Yorktown Heights, New York – was presented at the Interna-
tional Electron Device Meeting, December 2003.

‘usual’ plane waves – exists for which the off-diagonal ele-
ments of the density matrix (ρµν with µ �= ν, representing
coherent superpositions of the eigenmodes µ and ν) remain
much smaller than the diagonal elements (ρµµ, representing
the occupation of the eigenmode µ), for times longer than
the transit time in the device. This is because of the deco-
herence caused by the random action of the bath degrees of
freedom on the eigenstates of the system. As we shall see be-
low, we cannot overstress the importance of this choice of ba-
sis eigenfunctions to represent the density matrix: Any other
representation would result in formulations dominated by the
off-diagonal elements of ρ and, so, in transport equations sig-
nificantly more complicated, as they would not make use of
what we consider to be the ‘natural’ basis-states of the system.
Thus, we are led to describe transport with the Pauli Master
equation (PME):[7]

∂ρµµ

∂t
=

∑
ν

[Wµνρνν − Wνµρµµ] +
(

∂ρµµ

∂t

)
res

, (1)

where Wνµ is the Golden-rule transition rate from a state µ to
a state ν and the last term represents the injection/extraction
from the contacts (a most troublesome term).

Note that the PME above is quite similar to the BTE,
but the ‘driving field’ term is missing, since the field has
been ‘diagonalized’ via the proper choice of basis states.
This is exactly the reason why the PME represents a limit
diametrically opposite to the BTE: The basis states for
which the PME is valid are fully delocalized states and scat-
tering processes are represented as fully nonlocal interactions.

II. MASTER EQUATION AND IRREVERSIBILITY

A rigorous derivation of the PME, Eq. (1), remains an elu-
sive goal. Indeed, starting from the Liouville-von Neumann
equation,

∂ρ(t)
∂t

= − i

h̄
[H0(t), ρ(t)] − α

i

h̄
[H′(t), ρ(t)] , (2)

(where H0 is the unperturbed Hamiltonian and αH ′ the per-
turbing interaction term of dimensionless strength α), we note
that this is a time-reversible equation, while Eq. (1) is irre-
versible (dissipative). Along the path from Eq. (2) to Eq. (1)
we must necessarily meet the problem of understanding where
irreversibility (and the associated problem of decoherence)
enters the picture. Here we shall sketch the formal path we
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have followed[7], stressing many open problems.
Starting from Eq. (2) in the ‘weak coupling’ limit, α << 1,

we expand its formal solution by retaining only terms of order
α2. We are left with sums over matrix elements of the form:∑

λs

<µr|H′(t)|λs> <λs|H′(t′)|νp> , (3)

where λ, µ, and ν label the electronic states defined above
and the indices r, s, and p label the internal states of the
bath (e.g., phonon occupation and momenta) or the various
configurations (e.g., various distributions of impurities). Van
Hove observed[5] that most interactions of interest are such
that when µ �= ν the sum over the infinite degrees of free-
dom, s, involves random phases. Thus, the contribution of
these ‘off diagonal’ terms is of the order of the bath degrees
of freedom (or of the number of configurations of the impu-
rities[6]), Nb. If, however, µ = ν, then the sums yield an
in-phase contribution ∼ N 2

b . Thus, in the infinite-volume
limit (Nb → ∞), only the diagonal terms survive. Based on
this observation, Van Hove has shown that a proper selection
of ‘initial’ (or ‘injected’) states (namely, wavefunctions fully
delocalized throughout our small device) guarantees that off-
diagonal elements, initially absent, will not grow in time (ig-
noring virtual non-energy-conservingstates at short times dur-
ing a collision). We can now disregard off-diagonal terms, ρ µν

with µ �= ν, of the density matrix and consider only diagonal
terms ρµµ (simply written as ρµ). Next, we invoke the Markov
approximation for the phonon bath (or the random, uncorre-
lated distribution of impurities), the Hartree-Fock approxima-
tion for the many-electron Green’s functions, and reach the
equation (called ‘preMaster’ by Zwanzig[8]):

∂ρµ

∂t
=

∑
λ

∫ t

0

dt′[ Kµλ(t, t′) ρλ(t′) − Kλµ(t, t′) ρµ(t′) ] ,

(4)
having denoted by Kµλ(t, t′) the kernel of the scattering
processes, Re

∑
r,s < µr|H′(t)|λs >< λs|H′(t′)|µr >. Sur-

prisingly, Eq. (4) is still reversible[9], despite having used the
Markov approximation and having gone to the infinite-volume
limit. The final step required to convert Eq. (4) to the PME
form, Eq. (1), requires taking the ‘Van Hove limit’ α 2t → con-
stant as α2 → 0 while t → ∞, while also converting the ker-
nel Kµλ(t, t′) to the Golden-Rule transition rate Wµλ. This
last step requires the regularization of the (diverging) time in-
tegral in Eq. (4) by multiplying the integrand by exp(−ηt).
This is the only term which breaks the time-reversal symme-
try in the entire derivation. Finally, taking the limit η → 0,
we obtain the energy-conserving delta-function characterizing
completed collisions.

It is interesting to understand the connections between the
PME and alternative formulations of quantum transport. The
Keldysh-Kadanoff-Baym (KB) approach[10], especially in
its excellent implementation by the NEMO group[11], con-
siders as central quantity the nonequilibrium Green’s func-
tion (NEGF) G<(r, r′, t, t′), (see, for example, Datta’s ‘tu-
torial’[12]). Together with the function G<, the advanced and
retarded Green’s functions, GA and GR, and the correspond-
ing self energies, Σ, provide a complete description of non-
equilibrium quantum transport in terms of the KB and Dyson

equations. Use of the Wigner coordinates T = (t + t ′)/2,
τ = t − t′, R = (r + r′)/2 and ρ = r − r′ empha-
sizes the ‘slowly varying’ temporal and spatial dependences
via the ‘central’ coordinates T and R, amenable to an inter-
pretation analogous to the classical picture, and the depen-
dence on internal ’intracollisional’ variables τ and ρ of a pure
quantum nature. With a few exceptions – most notably the
NEMO group[11], the problem is usually tackled by Fourier-
transforming G< with respect to the ‘internal’ coordinates
τ = t− t′ and ρ = r− r′, and eliminating the dependence on
fast (intracollisional) times by integrating over energy – as is
done, for example, to obtain the Wigner function, f(R, T, k):

f(R, T, k) = − 1
2π

∫
dE G<(R, T, k, E) . (5)

This amounts to considering only the equal-time two-particle
Green’s function. The same step connects the equal-time G<

to the density matrix: Abandoning the plane-wave (k) repre-
sentation in favor of our basis-states |µ>, one recognizes that
(h̄/i)G<

µν(t, t) is just the density matrix ρµν(t). Indeed, one
can follow Zubarev et al.[13] and derive the PME from the
(generalized) KB equations by using Van Hove’s argument
to retain only the diagonal elements of the self-energies, and
several Ansätzen, most notably, embracing the quasi-particle
approximation by collapsing the spectral density function
into a delta-function, thus losing information about the
intracollisional dynamics and intercollisional correlations.
As noted above, the Wigner function approach is identical to
our Master equation approach, the latter being represented in
|µ >-space, the former in real space. Finally, the Semicon-
ductor Bloch Equation (SBE) approach followed by Rossi
and co-workers[14] accounts for the possible presence of
off-diagonal terms of the density matrix, but is otherwise
equivalent to the PME approach presented here.

Thus, the main strengths of the NEGF method originate
from the use of the two-time Green’s function and of ba-
sis ‘atomic’ basis function (often tight-binding localized
orbitals). The latter feature permits the accurate simula-
tion of structures at the atomic scale. On the down-side,
since localized basis functions do not carry current, the
current operator is dominated by off-diagonal terms, unlike
the PME. It is this characteristic which renders scattering
such a difficult proposition in the NEGF framework. The
use of the two-time Green’s function, however, permits,
at least in principle, the inclusion of effects related to a
‘broad’ spectral-density function, (although, in practice,
only second-order collisional broadening is often considered,
scattering processes often being handled in a golden-rule
fashion, all because of the mind-boggling complication of
the Dyson equation), of off-diagonal terms of the density
matrix resulting from intracollisional short-time effects and
from injection from the reservoirs. In practice, though,
reservoirs usually damp off-diagonal terms and a ‘diagonal’
injection has been recently found to be a necessary ingredient
to avoid physical artifacts in the context of the Wigner and
SBE approaches[15]. Finally, the real-space formulation
usually employed to formulate the NEGF equations often
causes scattering to be treated simplistically as a local process
and requires contacts to be treated as ‘decoupled’ regions,
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a treatment which is satisfactory only in the case of weak
device-contact coupling, as in resonant-tunnel-diodes.

The major advantage of the PME approach remains the
intuitive picture it provides, the exact treatment of the field,
the fact that it leads to a diagonal-dominated formulation,
thanks to the basis functions employed, and the realistic
(namely, non-local) model one can afford for scattering
processes. In addition, from a purely philosophical per-
spective, the PME approach introduces irreversibility in a
transparent way, namely, when taking the Van Hove limit of
completed collisions. The NEGF and the SBE approaches,
instead, struggle with the formalization of scattering, leaving
it as a “yet to be defined” concept: the NEGF introduces
formally the self-energies Σ<, Σ>, ΣA, and ΣR, but they
are defined as solutions of tremendously complicated Dyson
equations. In practice, the golden rule (or, worse yet, local
scattering processes) are used. The Wigner function also must
employ a “Boltzmann-like collisional integral” of dubious
origin, while, finally, scattering in the SBE approach is often
treated in a ‘golden rule’ fashion. All of these methods find
the source of irreversibility in the treatment of the contacts
(defined as equilibrium, and so irreversible, reservoirs), but
make no attempts to introduce or even clarify the origin of
dissipation within their framework. Finally, the objections
raised by Frensley against the PME concerning the violation
of current continuity[16] obviously do not affect steady-state
solutions[7] and, even during time transients, recent work
by Gebauer and Car[17] identifies fluctuations in the bath
during collisions as the component of the current, previously
neglected, required to satisfy current continuity exactly within
the PME context. Which method constitutes the best
compromise is probably a function of the applications one
has in mind (as well as “philosophical” personal preferences).
NEGF is clearly well suited to resonant tunneling devices
– for which scattering is not a major player and coupling
to the reservoirs is relatively weak – and to ”molecular”
devices well described by a basis of localized orbitals. The
SBE approach has been used extensively to investigate fast
coherent effects, when extended to include also the so-called
phonon-assisted density matrix[18]. The PME is probably the
best choice for MOSFETs, in which the correct electrostatics
and the role of quantitatively correct scattering rates are of
paramount importance.

III. NUMERICAL IMPLEMENTATION

The problem we face consists of solving simultaneously
the two-dimensional Schrödinger equation with open bound-
ary conditions, the PME, Eq. (1), and the two-dimensional
Poisson equation using the charge-density resulting from the
occupations ρµ and appropriate boundary conditions. We start
by solving the associated ballistic problem, that is, by ignor-
ing the scattering terms in Eq. (1), so that only the contacts
determine the occupations ρµ. The Schrödinger equation is
formulated using a six-valley, parabolic band approximation
describing approximately the conduction bands of Si. Full
details have been given elsewhere[20, 19]. Here we shall
simply emphasize three major elements of our procedure: 1.
The discretization of the continuous spectrum of the electronic

propagating states is performed by first solving the associated
Schrödinger equation with closed boundary conditions[7]. By
definition, the resulting spectrum of standing waves samples
the local density of states of the device. Alternative, simpler
discretization schemes (equi-energy or equi-wavevector dis-
cretization) have been found to be ineffective. 2. The contacts
are treated as ‘active’ elements, the Fermi-Dirac distribution
describing the reservoirs being ‘drifted’ in k-space so as to
maintain charge neutrality near the contacts and satisfy con-
tinuity of flux across the device/reservoir boundaries. Alter-
native schemes have been proposed before (see the discus-
sion in [16] and [7]). The use of any of these schemes is
absolutely required in order to reach physically meaningful
solutions. 3. Convergence is sought using a novel Broyden-
Newton method[19] which allows fast convergence even in
high-bias, high-current, strongly off-equilibrium situations.

Having obtained a ballistic solution, we employ a Monte
Carlo method to solve the PME[7]. Its implementation paral-
lels the conventional technique used to solve the BTE, since
the PME is nothing but the BTE expressed on the basis of
the traveling eigenstates |µ > of the Hamiltonian H0, and
‘stripped’ of the term expressing the action of the electro-
static field, since this is already diagonalized exactly when
using the basis |µ> instead of plane waves. Results shown
below have been obtained by including only intravalley scat-
tering with acoustic phonons (in the elastic, equipartition ap-
proximation) and inelastic intervalley processes. The inclu-
sion of scattering with ionized impurities, currently being
studied, allows alternative interesting formulations, either by
exploiting the configuration average to account for dissipa-
tion, in the spirit of Kohn and Luttinger[6], or by accounting
for non-phase-breaking processes when a given configuration
is considered. In this case correlations between scattering
processes are retained, but a time-consuming configuration
average (over many simulations) is required. Carrier-carrier
scattering can also be shown to be an interaction of the Van
Hove type, as long as the devices are sufficiently large to be
populated by many carriers.

Figure 1: Bottom frame: Current density associated with one particular
eigenmode of a ‘straight’ double-gate Si FET. Note the many vortices, sig-
nature of a reduced transmission amplitude. The top two frames show the
geometry of the ‘roughened’ device.
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IV. RESULTS AND CONCLUSIONS

We have previously investigated the role of the access
geometry in ballistic double-gate (DG) Si FETs, showing that
pure quantum effects (quantum reflection and diffraction in
the source/channel constriction) can influence the current to
an extent comparable to the that of scattering[21]. Another
interesting ‘ballistic’ effect is the emergence of vorticity in
‘bent’ resonant-tunnel-diodes[22]. But, as illustrated in Fig. 1,
the phenomenon is not unique when looking for vorticity in in-
dividual eigenstates: The roughened interfaces of a ‘straight’
DG Si FET induce the transfer of enough angular momen-
tum to generate a large amount of vorticity. The observed
reduced transmission amplitude for eigenstates showing vor-
tices suggests the existence of an intriguing general correla-
tion between vorticity, scattering, and resistance. Coherent
scattering with ionized impurities is expected to cause similar
effects, as already investigated by Barker[23].
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Figure 2: Clockwise from top left: Potential energy, carrier density, drift
velocity, and kinetic energy along the channel of a ‘taper’ DG Si FET at
300 K with VGS = 0.2 V and VDS = 0.4 V obtained from a 2D solution of
the coupled PME-Schrödinger-Poisson problem. All quantities are averaged
over the width of the channel. The dashed black lines refer to a ballistic
simulation, the solid red lines to a simulation performed acounting for intra-
and inter-valley electron-phonon processes.

Our first example of a 2D simulation with scattering is the
‘taper’ DG FET described before[20]. Figure 2 shows the
main results of the ballistic simulation (dashed black lines)
– averaged over the transverse direction of the device – com-
pared to the results obtained when accounting for electron-
phonon scattering (solid red lines): The potential energy
and carrier densities are barely altered (only noticeable is a
slight increase of the electron concentration associated with
the scattering-induced slow-down), while a drop in the max-
imum carrier energy and an even more significant reduction
of the drift velocity are seen in the bottom panels. An inter-
esting observation concerns the effect that inelastic scattering
processes have on the current density: As shown in the top-
left panel of Fig. (2), the current density drops from its ‘bal-
listic’ value of ∼ 2.09 mA/µm to a value barely 10% lower,

∼ 1.8 mA/µm. On the contrary, under purely ballistic trans-
port the current density under the same bias conditions exh-
bits a variation of about 30% when moving from a ‘straight’
to a ‘dog-bone’ access geometry[21]. This unexpected re-
sult shows that purely quantum mechanical effects such as
interference/refraction at geometrical contrictions may mat-
ter more than phase-breaking scattering processes at length
scales comparable to the electron wavelength. Admittedly,
the effect of the geometry may be amplified in purely balistic
simulations (for example: scattering with impurities may per-
turb transport more than the geometry, thus damping the ef-
fect of geometric constrictions themselves on transport). Yet,
these results are suggestive of the importance that non-phase-
breaking, non-dissipative ‘collisions’ may have on transport
at the nanometer length scale.
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[2] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys.

Rev. B 31, p. 6207 (1985).
[3] J. Bardeen and W. Shockley, Phys. Rev. 81, p. 69 (1950).
[4] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,

p. 437 (1982).
[5] L. Van Hove, Physica XXI, p. 517 (1955).
[6] W. Kohn and J. M. Luttinger, Phys. Rev. 108, p. 590

(1957).
[7] M. V. Fischetti, J. Appl. Phys. 83, p. 270 (1998); Phys.

Rev. B 59, p. 4901 (1999).
[8] R. W. Zwanzig, in Quantum Statistical Mechanics, Paul

H. E. Meijer, Ed., (Gordon and Breach, New York, 1966),
p. 139.

[9] R. Jancel, Foundations of Classical and Quantum Statis-
tical Mechanics, Pergamon, Braunschweig, 1969).

[10] L. Kadanoff and G. Baym, Quantum Statistical Mechan-
ics: Green’s Function Methods in Equilibrium and Non-
equilibrium Problems, (Benjamin, New York, 1962).

[11] R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J.
Appl. Phys. 81, p. 7845 (1997).

[12] S. Datta, IEDM Tech. Digest, p. 703 (2002).
[13] V. Morozov D. Zubarev and G. Roepke, Statistical Me-

chanics of Nonequilibrium Processes, (Akademie Verlag,
Berlin, 1997).

[14] F. Rossi, A. Di Carlo, and P. Lugli, Phys. Rev. Lett. 80,
p. 3348 (1988).

[15] R. Proietti-Zaccaria and F. Rossi, Phys. Rev. B 67, p.
113311 (2003).

[16] W. R. Frensley, Rev. Mod. Phys. 62, p. 745 (1990).
[17] R. Gebauer and R. Car, Phys. Rev. B 70, p. 125324

(2004).
[18] J. Schilp, T. Kuhn and G. Mahler, Phys. Rev. B 50, p.

5435 (1994).
[19] S. E. Laux, A. Kumar, and M. V. Fischetti, IEDM Tech.

Digest, p. 715 (2002).
[20] S. E. Laux, A. Kumar, and M. V. Fischetti, IEEE Trans.

Nanotechnol. 1, p. 255 (2002).
[21] S. E. Laux, A. Kumar, and M. V. Fischetti, J. Appl. Phys.

95, 5545 (2003).
[22] S. E. Laux, A. Kumar, and M. V. Fischetti, J. Comp.

Electron. 2, p. 105 (2003).
[23] J. R. Barker, J. Comp. Electron. 2, p. 153 (2003).

22


