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Abstract—This paper describes part of an investigation that
aims at consistently incorporating quantum corrections into
the transport model, for applications to advanced solid-state
devices. The task is carried out in two steps. The first one
derives two equations in which the dynamics of the dispersion of
the single-particle wave function is accounted for in addition
to that of the expectation value of position. The model is
founded on an approximate description of the wave function
that eliminates the need of the Ehrenfest approximation. The
second step is based on the Lagrangian form of the single-particle
equations and incorporates such an extended dynamics into the
statistical framework. The theory is suitable for different levels
of applications: the first step is applicable to the single-particle
ballistic dynamics; the second, after a suitable generalization of
the collision terms, to the solution of the Boltzmann equation
by the Monte Carlo or other methods, and to the solution of
the continuity equations in the position-dispersion space. The
paper shows the formalism of the single-particle dynamics and
provides some examples of its application to typical test cases,
along with comparisons with the corresponding solutions of the
Schrödinger equation. The derivation of the balance equations
for the collective transport is discussed as well.

I. I NTRODUCTION

In a recent paper, a theory has been proposed that leads to a
set of two Newton-like equations describing the single-particle
dynamics. The dynamical variables of the equations are the
expectation value� of the wave function and its dispersion�
[1].1 The equations inherently account for the Heinsenberg
position-momentum uncertainty relation and exhibit a term
proportional to���, with �� the reduced Planck constant.
The theory has been devised for application to the modeling of
advanced solid-state devices, where it is necessary to account
for the finite extension of the particles’ wave functions. The
latter, in fact, plays a non-negligible role due to the device size
and to the presence of sharp variations in the electric potential.
The key point in the derivation of the set of Newton equations
is an approximate method to calculate the average of the force
over the wave function. The method allows one to dispose of
the Ehrenfest approximation without the need of completely
determining the wave function itself. The outcome of the
method is the set of equations
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1At the time of preparing this manuscript the issue and page numbers of
references [1] and [2] were not known yet.
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where� ��� is the potential energy, with� � ���� ��� ���, and
� the particle mass. More specifically it is assumed that the
particle energies are sufficiently low to make the effective-
mass approximation applicable. As a consequence,� is in
fact the particle effective mass. Although the tensor nature of
it could be included in the calculation, it is not considered
here for the sake of simplicity.
In turn,�� is the	th component of the expectation value of the
particle’s position and�� the 	th component of the dispersion
of the particle’s position. These quantities are given by
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with 	 � �� �� �. In (3,4)���� �� indicates the particle’s wave
function, which is assumed normalized. The integrals are
carried out over the domain of�.
Eqs. (1,2) describe the dynamics of the expectation value and
dispersion of the wave function for a given potential energy� .
They provide an improved picture with respect to that given
by the expectation value alone, namely,
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which is derived in a straightforward manner by calculating
from the standard quantum-mechanical procedure the time
derivatives of the expectation values of position and momen-
tum, and by applying the Ehrenfest approximation to the result.
In particular, (1,2) incorporate a description of the wave
function’s dispersion, which is a typical quantum feature
because it is related to the non-zero extension of the wave
packet. Thus, it is of interest to compare the results derived
from (1,2) with those obtained from the solution of the full
Schrödinger equation. Such a comparison is carried out in this
paper for a number of cases of practical interest.
Having in mind the application of the model to the description
of carrier transport in solid-state devices, it is worth pointing
out that in the case of a semiconductor crystal the potential
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energy� of (1,2) derives only from the perturbations due
to the application of an external field and/or the presence
of a position-dependent dopant concentration. The effects of
collisions are not included in (1,2) and must subsequently
be introduced into the transport equation as shown in [2]. It
follows that the investigation about the validity range of (1,2)
must focus on the short time between collisions in the typical
operating regime of solid-state devices.
A qualitative picture about how (1,2) are derived may be
given as follows. The physical domain where the particle
motion occurs is assumed to be sufficiently small to make the
size of the particle’s wave function significant. The periodic
potential energy due to the crystal is accounted for through the
equivalent Hamiltonian. Taking the low-energy case, the latter
is expanded to the second order leading to the effective-mass
concept. Starting from some initial condition the envelope
wave function propagates under the influence of the external
field, until a collision occurs or the particle leaves the domain
of interest. During the flight the expectation value of the
particle position evolves in time, while the wave function
undergoes a deformation that makes its dispersion to evolve
as well.
From the mathematical viewpoint the expectation value of
position is the first-order moment of����. The zero-order
moment is also present in the theory due to the normalization
condition. To improve the description of the particle motion
beyond that provided by the expectation value of position,
which constitutes the Ehrenfest approximation, it is sensible
to take the second-order moment. This is equivalent to add
the dispersion as a new dynamical variable. Then, the first
step leading to (1,2) is the standard calculation of the time
derivative of an expectation value applied to the operators
 �
and 
�� . The derivation is completed by assuming that���� at
the initial time has a Gaussian shape, in order to apply the
minimum-uncertainty condition.
The concept of equivalent Hamiltonian does not apply any
more if a collision occurs. In this case the particle dynamics
must be tackled by a full-quantum calculation. The latter pro-
vides the transition probabilities per unit time of the dynamical
variables conjugate to�, �.
It is worth observing that the procedure depicted above lends
itself to a systematic refinement. In fact, it is known that
a function that possesses the moments of all orders can be
reconstructed starting from a series made of the moments
themselves. A finite number of moments thus provides a partial
reconstruction of the function. The refinement is achieved by
adding more moments to the truncated series.
In modern solid-state devices it often happens that the domain
size in one or two dimensions is so small as to give rise to
subbands. In this case (1,2) must be adjusted to account for
the dynamics of a suitable subset of variables. Due to their
structure, (1,2) will be termedposition-dispersion equations
or, more shortly,-	 equationsto remind the symbols by
which these variables are usually indicated in the literature.
The paper is organized as follows: a brief discussion about the
-	 equations is carried out in section II. Then, the compar-

ison between the outcome of the-	 model and the solution
of the Schrödinger equation is carried out in section III for the
cases of a free particle, of a particle subject to a linear potential
energy, and of the linear harmonic oscillator. Section IV deals
with the regional approach, namely, the use of piecewise-
polynomial approximations for the external potential energy
� , and with the treatment of the discontinuities of some
derivatives of� at the boundaries. A qualitative discussion
of tunneling is carried out as well. Finally, the application of
the -	 equation to the collective transport is discussed in
section V, while the conclusions are drawn in section VI.

II. T HE �-� EQUATIONS

Some qualitative features of (1,2) are discussed below. First,
the force at the right hand side of each equation is made of
two terms. At the right hand side of (1) the first term depends
on � only and is the standard component of the force present
at � in the Ehrenfest approximation. The second term is a
correction that accounts for the wave function’s dispersion,
and its expression is a mixture of the� and � coordinates.
One may notice that the quantity multiplying�� in the second
term has the dimensions of a pressure. Turning to (2), the
first term at the right hand side depends on�� only. Also,
as �� is positive definite, the term���������� gives rise to
a repulsive force that diverges as�� approaches zero. Such a
force, that prevents�� from vanishing, is a consequence of the
Heisenberg uncertainty principle inherent in the derivation of
the-	 equations. The second term at the right hand side of
(2) is again a mixture of coordinates. The mixed terms give
rise to an exchange of energy between the two sets� and�
of degrees of freedom of the particle.
It is interesting to note that the reduced Planck constant��
appears only in the first term at the right hand side of (2). Then,
it would seem sensible to think of such a term as a quantum
correction, that applies to a formally-classical description of
the dynamics of a system having six degrees of freedom,
and disappears in the classical limit�� � � leaving behind
an equation of motion of the form�
� � � ��� �������� .
However this conclusion is not sound, because in the classical
limit all the “internal” degrees of freedom�� disappear from
the equations of motion. Thus it is more correct to consider
all internal degrees of freedom as typical of the quantum
correction.
It is worth adding a few comments about the fact that, although
the original Hamiltonian operator
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is conservative, the-	 equations (1,2) deriving from it are
not necessarily so, unless some special form is prescribed for
the potential energy� . The problem does not occur in the
Ehrenfest approximation because the�� coordinates are not
present there, and the terms involving the�� coordinates are
in gradient form from the very beginning.
The conservativeness of the force field is not essential as long
as the description of the particle’s dynamics is concerned,
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which may be tackled by solving the system of equations (1,2)
directly. On the other hand, the Hamiltonian form of the equa-
tions provides obvious advantages for both the description of
the single-particle dynamics and its extension to the collective-
transport case. For this reason, the conservative case only will
be considered here, by assuming specific forms of the potential
energy� such that the force field of (1,2) is conservative.
More general shapes of� may be described by subdividing
the domain of� into small regions and interpolating� in each
region by functions that keep the conservativeness of the force
field locally. However it must be noted that such a regional
approach gives rise to discontinuities in some derivatives at
the boundaries between regions. An example of this will be
given in section IV. Prior to that, some important cases in
which the same form of� holds in the whole� space will be
illustrated.

III. E XAMPLES

This section is devoted to the analysis of three important
test cases, namely those where the potential energy� is
constant, linear, or quadratic. The expectation value�� and
dispersion�� provided by the-	 equations are compared
within a given time range with those derived from the solution
of the Schrödinger equation. The analysis of the test cases is
important because more complicated shapes of the potential
energy may be constructed by a combination of them.
Analysing the dynamics of�� is straightforward. For in-
stance, when� � const the dynamics is separated into one-
dimensional problems, each associated to a pair��� �� of
degrees of freedom. For�� the-	 equations yield�� � ����
�����, where���, ���� indicate the initial conditions. The result
is identical to that obtained from a full-quantum calculation.
This is not surprising, as it is known that when the potential
energy is constant, linear, or quadratic, the expectation values
of position and momentum rigorously satisfy the classical
equations of motion (see, e.g., [3, III�]). For this result to
hold it is not necessary to assume any special form of the wave
packet at� � �. However, for consistency with the derivation
of the -	 equations, here and in the following the initial
form of the packet is assumed to be Gaussian.
The conclusion is that for a constant, linear, or quadratic
potential energy the dynamics of�� derived from the-	
equations (1) is exact at all times.
A more interesting comparison is about the dynamics of
dispersion. It is known that the full-quantum calculation of
the dispersion of a Gaussian wave packet in free space, valid
at all times, provides (see, e.g., Eq. (20) of [3, G�])
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��� � ���� � ��. The solution of (2) for a free particle is
obviously different from (7). However, its first-order expan-
sion in time is exactly equal to (7). As noted before, the
comparison is meaningful because the derivation of the-	
equations assumes that the wave packet is initially Gaussian
as well. However, it is also necessary to check whether the

time range where the first-order expansion holds is sensible
for the application to the semiconductor-device analysis. The
expansion implies the constraint
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A quantitative estimate may be carried out using the pa-
rameters of the conduction band of silicon in the effective-
mass approximation. The interatomic distance�� in the silicon
crystal is about����� nm. One may assume that the initial
value



��� of the wave packet’s standard deviation along the

	th direction is significantly larger than��, say,


��� � �� ��.

Also, the time interval in which the estimate is to be carried
out must be smaller than the average time between collisions
��. Considering the case of an undoped crystal subject to a
weak electric field, it is�� � ����� s at room temperature.
In the estimate one may use for� the effective mass��

of the electrons in the conduction band, given by���� �
���� � ����, with �� � ���� �� and �� � ���� ��

the longitudinal and transversal mass at room temperature,
respectively, and�� the free-electron mass [4]. One finds
that for � � �� the approximation is indeed applicable to the
problem of interest. For instance, the data used in the graph
of Fig. 1 show that at� � ��� ps the relative error� on the
standard deviation with respect to the full-quantum case is
about����. At the relatively large time� � ��� ps it is still
� � ���.
The approximation is even better if the semiconductor is
doped and/or the electric field is high, because such operating
conditions make�� to decrease.
The discussion above readily extends to the case where the
potential energy is a linear function of the coordinates. In
fact, as noted before, the dynamics of the expectation value
�� provided by the-	 equations is exact at all times for this
type of potential energy. As far as the dispersion is concerned,
an initially-Gaussian packet spreads in the same manner as in
the free-particle case [5]. As a consequence, (7) still holds
when the potential energy is linear, and the discussion about
the applicability limits of the-	 equations to the analysis
of semiconductor devices leads to the same conclusions as in
the free-particle case.
It is interesting to note that the initial conditions might be
prescribed in such a way as to make��� � � at � � �, so that
the dispersion initially tends to decrease with respect to the
initial value. However it is easily seen that, when the potential
energy� is constant or linear, the term inversely proportional
to �� at the right hand side of (2) will always make�� to
eventually increase in time.

Another interesting example is that of a potential energy of the
linear harmonic-oscillator type. As in the previous examples
the dynamics is separated into one-dimensional problems. Eq.
(1) provides an oscillatory motion of� � around�� � � with
the same angular frequency�� as in the classical case. The
full-quantum calculation shows that the expectation value of
the wave packet along the	th direction oscillates with the
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Fig. 1. Comparison of the-	 standard deviation


�� with

the full-quantum case as a function of time, for a constant or
a linear potential energy. The relative error is defined as�

�
�

�


���	�
���
��
���	. The inset shows���� calculated

at a fixed time� � ��� ps for different initial values of the
normalized standard deviation. The normalization factor�� �
����� nm is the interatomic distance in a silicon crystal at
room temperature.

same frequency. This should be expected as already noted at
the beginning of this section.
Turning to the dispersion, for a linear harmonic oscillator it is
known that in the full-quantum case the dispersion oscillates
as well, with an angular frequency��� (see, e.g., [6, XII]).
Again, for this result to hold it is not necessary that the initial
packet’s form be Gaussian. Correspondingly, the-	 equation
for the dispersion reads

�
d���
d��

�
���

��

�

��
����� �� � (9)

which is seen by inspection to provide an oscillatory motion.
In fact, the generalized force that determines the dynamics
of �� is the sum of two terms. The first one is repulsive
from the origin, diverges as�� approaches zero, and tends to
vanish as�� departs from zero. The second one is attractive
towards the origin, diverges as�� departs from it, and tends to
vanish as�� approaches zero. These observations are sufficient
for concluding that the motion of� � is oscillatory. Also, the
generalized force has only one zero at��	 � ����



�����. It

follows that the motion occurs in the interval defined by the
zeros of
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where�
� is the constant energy associated to the degree of
freedom described by��. In the actual calculations involving
(10) it is convenient to take��� � ��	. Note that�
� has no
upper limit, whereas its minimum is determined by imposing
that the zeros of the left hand side of (10) coincide.

To find whether the-	 method catches the oscillation
frequency of the dispersion it is necessary to solve (10)
numerically. However, its limiting cases can be estimated
analytically. One finds that the oscillation frequency tends to
the exact limit��� when�
� increases, whereas it tends to
decrease when�
� approaches its minimum. The lower limit
of the oscillation frequency is



���. The numerical solution

of (10) shows that the estimates are correct, and also that the
frequency decrease from��� to



��� occurs in a very small

energy interval near the minimum of�
�. Such a behavior is
also consistent with the full-quantum calculation.

IV. T HE REGIONAL APPROACH

As anticipated at the end of section II, it is preferable to
deal with potential energies that allow for recasting (1,2) in a
conservative form, namely, that transform the right hand sides
into the components of a gradient. Taking the one-dimensional
case by way of example, with coordinates� and�, it is seen by
inspection that the goal is achieved using a piecewise-quadratic
form of � . This is similar to the method often used in quantum
calculations, where a complicated shape of� is approximated
by piecewise-constant functions, and the wave function and its
space derivatives are then matched at the regions’ boundaries.
Here, the matching must be accomplished in time by imposing
suitable conditions onto� and�.
The analysis of the regional approach is easier in the case
of (2), which will be illustrated first. Approximating� by
a piecewise-quadratic form leads to spatial discontinuities in
the second derivative� ��. At the time when���� reaches a
discontinuity point of� ��, the acceleration
� undergoes a
discontinuity in time, while� and �� remain continuous. It
follows that the constant energy�
 associated to the degree
of freedom described by� (corresponding to�
� of (10)) may
take different values in the intervals between discontinuities.
In parallel, a spatial discontinuity of� �� forces a delta-like
behavior of� ��� at the same point. This, in turn, induces a
time discontinuity of ��, whereas� remains continuous. This
makes the energy�� associated to� discontinuous as well,
due to the change in its kinetic part at the discontinuity points.
However, it is found that the discontinuities of� � and �


exactly balance each other so that the sum�� � �
 takes
the same constant value over all intervals, as dictated by the
conservativeness of the force field. This is an example of the
energy exchange between the degrees of freedom that was
mentioned in section II.
It is worth adding that the description of the potential energy as
a piecewise-quadratic form lends itself to tackling the impor-
tant cases of particles interacting with steps or barriers. Among
these, of paramount importance for modern semiconductor
devices is of course the case of tunneling across a barrier.
The application of the-	 model to the tunneling problem
requires a detailed analysis in itself, which is addressed in a
separate paper [7]. Here a qualitative-only description will be
given, in order to show how the-	 equations are indeed
able to catch the essence of a non-classical effect such as the
tunneling through a barrier.
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Still considering a one-dimensional case, let the barrier height
be �� , and let�� � �
 be the total energy of a particle
approaching the barrier. If the energy related to the� degree
of freedom equals the barrier height,�� � �� , the particle’s
expectation value stops as it reaches the barrier’s position, say
at � � �. However, the dispersion� keeps increasing in time,
and the standard deviation



� fills up a larger and larger

segment of the� axis centered at� � �. Assuming that the
particle approached the barrier from the left, the fraction of

� on the left (right) of� � � may be taken as the reflection

(transmission) probability in the frame of the-	 model.
If �� � �� holds, the expectation value bounces back at
� � �. In this case the midpoint of the segment representing
the standard deviation is rigidly carried to the left by the
expectation value, while the segment’s length keeps increasing.
Depending on the initial conditions it may happen that the
segment’s right end lies on the right of the barrier, which
corresponds to a non-zero transmission probability. By the
same token this description provides a non-zero reflection
probability in the case�� � �� .
It is worth observing that, as far as the expectation value of
position is concerned, the possible outcomes of the-	 and
Schrödinger equations are just the same, although the time
dependence of� may be different. This points out that the
inclusion of dispersion into the model is essential for providing
a description of tunneling, albeit approximate.

V. THE COLLECTIVE TRANSPORT

The -	 equations lend themselves to the derivation of a
generalized form of the Boltzmann transport equation. This is
accomplished by extracting a set of canonically-conjugate dy-
namical variables from the single-particle equations (1,2) and
constructing a Boltzmann-like transport equation by means of
the Liouville theorem.
Once the Boltzmann-like equation has been obtained, a set of
balance equations for the concentration� of the particles in
the ��� space is derived by taking the first-order moments.
This is done by multiplying the Boltzmann-like equation by
��� or ��� and integrating over the space conjugate to�, � [2].
As the whole derivation of the balance equations complies
with the standard procedure of the transport theory, and
remembering that the single-particle equations (1,2) embed a
quantum feature through the dispersion, it follows that the
-	 method provides a sound basis for the inclusion of
quantum effects into the equations that describe the collective
transport of charge. Thus it constitutes a possible alternative to
other methods that have been proposed in the last years, e.g.,
the density-gradient correction[8], [9], in which a correction
term is added to the potential energy of the transport model
in the � space to obtain an equivalent field acting on the
carriers, or theeffective-potential correction[10], [11], which
generalizes the DG correction starting from a convolution of
the actual potential energy with the wave function, or the
smooth quantum potential[12], where an effective stress tensor
and energy density for the quantum hydrodynamic equations
are derived in the Born approximation to the Bloch equation.

It is shown in [13] that the density-gradient correction for a
pure state is actually the quantum potential of Bohm [14],
which may in turn be traced back to the pilot wave of de
Broglie [15], [16]. An interesting analysis about the ability of
the density-gradient correction to describe tunneling is carried
out in [17].
To complete the collective-transport part it is necessary to
incorporate the scattering events into the balance equations.
As noted in section I this should be made consistently with
the model’s formalisms, namely, by parametrizing the wave
function by � and �. This will be the object of future
investigations.
The set of balance equations for the concentration� in the
��� space has a form that lends itself to the application of
the standard numerical schemes implemented in commercial
simulators. In fact, such a set is made of a continuity equation
for � coupled with other equations describing the fluxes in the
� and� spaces. Extracting the fluxes and replacing them into
the continuity equation yields a scalar, second-order partial-
differential equation in the unknown�.
The boundary conditions of the model are standard as well:
� is prescribed along some parts of the boundary (typically,
the equilibrium distribution may be taken there), while the
normal components of the fluxes in the� and� spaces are
made to vanish along the remaining parts of the boundary.
The equations must eventually be coupled with the Poisson
equation that provides the potential energy� as a function of
the charge distribution.

VI. CONCLUSIONS

The theory depicted in this paper leads, first, to a set of the
two -	 equations (1,2) describing the expectation value of
position and the dispersion of the wave function. The outcome
is different from the approaches of [8], [9] and [10], where the
quantum-correction term is added to the potential energy of
the transport model in the� space, to obtain an “equivalent”
field acting on the carriers.
The application to test cases and the comparison with the
corresponding solutions of the Schr¨odinger equation show
that the-	 equations provide the correct description of the
single-particle dynamics within a time range of the order of
the average time between collisions in a semiconductor like
silicon. This result is encouraging because, next, the model
provides the basis for extending the method to the description
of the collective transport, following the standard recipe of the
transport theory.
Presently a more intensive experimentation is still necessary
for the ballistic case, to test the performance of the method in
two or three dimensions and to extend its validation to more
complicated forms of the potential energy. As anticipated in
section IV, this is indeed possible despite the difficulty of
finding a Lagrangian form of (1,2) for an arbitrary potential
energy� .
As far as the transport aspects of this work are concerned, the
model needs to be completed by a consistent calculation of

17



the scattering terms, followed by a thorough comparison with
the approaches of [8], [9], [10], [12].
The derivation of the model based on the-	 equations also
provides some clues about future refinements of the theory.
Remembering the description of section I, the single-particle,
ballistic case is improved by considering moments of���� of
higher orders than the second. As for the transport aspects,
the key to future refinements is also apparent in the model
proposed here, namely, using higher-order moments of the
Boltzmann equation to achieve a set of hydrodynamic-like
transport equations following, e.g., the approach of [18], [19].
Finally, as mentioned in section V, the transport equations
provided by the-	 model are of the same type as those
solved by the present commercial simulators. This is a positive
aspect in view of the analysis of realistic devices, where the
full-quantum approaches may become inapplicable due to the
complicate geometries, or too expensive from the numerical
viewpoint.
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