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Abstract

To overcome limitations of the classic drift-diffusion model, several higher-order trans-
port models such as Stratton’s energy-balance model and Blgtekjer’s hydrodynamic
model have been proposed. While for the drift-diffusion model the only transport pa-
rameter to be modeled correctly is the carrier mobility, there are many more significant
parameters in higher-order models which cannot be directly taken from measurements.
These parameters have to be chosen consistently, because otherwise the accuracy of the
transport model cannot be properly assessed. Although a considerable number of pa-
rameter suggestions exists, it is not clear how well these models work when applied to
submicron devices. Here we attempt a practical comparison as consistent as possible.

1 Introduction

We restrict our discussion to macroscopic transport models derived from Boltzmann’s
transport equation [1]. A simplified solution of the seven-dimensional Boltzmann equa-
tion is obtained by investigating only low order moments of the distribution function,
such as the carrier concentration and the carrier temperature. Moments are obtained
by multiplying the distribution function with suitable weight functions ¢ = ¢(k) and
integrating the product over k-space as n(¢) = [ ¢f dk, with n being the carrier con-
centration. The equations which determine a given set of moments form a macroscopic
transport model. Conventionally, the balance equations are obtained from powers of the
energy £, whereas the weight functions p&£? with the momentum p = 7k give the flux
relations as
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with P, = (p€%), V; = (u&), w <5i> U, = (u@ p&Y), the moments of the
scattering integral ng; = [£7Q[f(k)] d®k and nQ; = [ pE&’ Q[f(k)] d®k, F the
external force, in our case F(r) = —qE( ) for homogeneous band structures and ne-
glected magnetic fields. This equation system contains more unknowns than equations
and each equation is coupled to the next higher equation. Since the current density is
proportional to the average velocity V, and many physical processes are modeled as
a function of the average energy w, it is sensible to use the quantities V; and w; as
solution variables. For such a choice the additional moments P;, U;, ¢;, and Q; have
to be expressed as functions of the solution variables, which is not exactly possible and
known as closure problem.

Alternatively, the weight functions u€® can be used to obtain the flux relations [2]

¢ = u&' = Vo +V -nUl, —nF - (W, +iU}) = nQ; (3.)

with the tensors U = (u @ u&~!) and W; = (&%) and the moment of the
scattering integral nQ; = [ u&’ Q[f (k)] d3k.

Stratton’s approach [3] is based on the microscopic relaxation time and gives another
set of flux relations which, however, is not included in our comparison.

The balance equations (1) together with the flux relations (2) or (3) form a hierarchy of
transport equations which has to be truncated at a certain order N to obtain a tractable
equation set. Here we consider the orders N = 4 which results in hydrodynamic and
energy-transport models, whereas N = 6 gives a six moments model.

2 Closure Relations

The closure relations used to model the additional moments in terms of the solution
variables determine the differences between the various transport models. Some of the
most commonly used approximations are discussed in the following.

2.1 Energy-Like Tensors

For parabolic energy bands we have a simple relation between the momentum p and
the group velocity u, p = mu, with m being the effective mass. If we further assume
that the distribution function can be reasonably described by a displaced and heated
Maxwellian distribution, simple relationships can be derived for the energy-like tensors,
for instance U; = %wll — mV02/3 +mVy ® V. However, even the simplest model of
this type, Blgtekjeer’s hydrodynamic model [4], is difficult to solve for multidimensional
domains due to the existence of hyperbolic modes. Thus, claiming that the system
is diffusion dominated [5], the convective terms and the time derivatives in the flux
relations are commonly neglected, resulting in parabolic partial differential equation
systems [6] which are considerably simpler to solve.

In the diffusion limit which we assume to hold in the following, the energy-like ten-
sors for non parabolic bands can be expressed by scalars, U; = U; I, which evaluate
toU; = 3wZ H;, where H; considers the influence of a non-parabolic band structure
on the streaming terms (H; = 1 for parabolic bands). The non-parabolicity correction
factors are defined through the trace of the energy-like tensors U; as H; = tr U; /(2w1)
and have been modeled as either energy-dependent using a simple analytical expres-
sion [7], by the incorporation of bulk Monte Carlo data [2], or via analytic models



for the distribution function [8]. Since the equation system is truncated after N equa-
tions, where we consider only an even number NN, the highest-order solution variable is
wy/2—1. However, in the highest-order equation the moment U/, appears which has
to be expressed as a function of the available moments. Often, a heated Maxwellian
distribution is used to derive such a relation [2-4].

2.2 Scattering Integral

The closure relations for the even moments of the scattering integral ¢; are in general not
considered to be too critical. Conventionally, relaxation times of the form 7, = —(w; —
W;.eq)/q; are introduced, with w; 4 being the equilibrium value of w;. The relaxation
times are then modeled as either constant or energy-dependent [6]. However, since
a constant energy-relaxation time 71 in conjuction with an analytical mobility model
often does not properly reproduce the homogeneous velocity-field characteristics, 7;
has frequently been used as a fit parameter. Particularly, a smaller energy-relaxation
time reduces the average energy and thus reduces the influence of hot-carrier effects.
This makes energy-transport models appear to perform better for short-channel lengths
where hot-carrier effects are often overestimated. However, the current in long-channel
devices will be degraded as well. To avoid any uncertainties arising from this point we
tabulate the bulk values for —; and model the relaxation times as functions of the average
energy w, and doping.

The closure relations for the odd moments Q;, however, are more critical and subject
to much debate [6, 8]. Rather simple expressions are obtained with the macroscopic re-
laxation time approximation where mobilities p; are introduced in analogy to the drift-
diffusion model. Q; is thus expressed as Q; = —q'V;/u;, where p; is usually modeled
as a function of the average energy w; only. A rigorous treatment reveals, however, that
these odd moments of the scattering integral Q; depend on the odd moments of the dis-
tribution function and thus on all fluxes [9,10] as Q; = > Z;;V;. Closure relations of
this type cause an additional coupling between the flux equations and require a detailed
description of the energy-like tensors to obtain an overall improvement of the transport
model [11]. We therefore restrict our discussion to models based on the macroscopic
relaxation time approximation.

2.3 Energy-Transport Models in the Heat-Flux Formulation

By expressing the term nF through V;, and inserting this definition into the energy-
flux equation (2.1) we obtain by neglecting the terms V H;, defining wy = 3kgT,,/2,
calculating wo via a heated Maxwellian distribution, and assuming Ho ~ Hy(3 +
2H,)/5, the heat-flux formulation of (2.1)

k2T, 3+2H
B OT,, g = 22 (g

nV1 = nVO%kBTné — %6171
a po 5 Ho

Various models have been suggested for the parameters ¢, and d;, simplifying the ex-
pressions given above (see Section 3). Equation (4) has often been subject to discus-
sions. By comparison with Monte Carlo simulations it was found that for short-channel
devices the heat-flux term (VT},) has to be reduced by multiplying J; with a constant
factor fur in the range 0.1 — 0.2 to obtain acceptable agreement [12,13]. Reviewing



the derivation of (4) reveals one possible reason, namely that the V7;, term only en-
ters the energy-flux relation through the heated Maxwellian assumption for the term
V(U;+1/Uy), which is known to be poor for short-channel devices. Another impor-
tant contribution has been identified by Tang et al. [14] where an inhomogeneous term
was added to the homogeneous mobility, which caused a significant reduction of the
heat-flux term in the final relations.

3 Macroscopic Transport Models

In the following we shortly describe the non-parabolic transport models used for our
comparison. Except otherwise noted, all transport models use the same mobilities 1,
and relaxation times 7; extracted from homogeneous full-band simulations [15] as a
function of w; and doping. To ensure consistency in the bulk case, the mobilities are
extracted from the homogeneous flux relations as

Vi
_ _ 5
M= Bw(1+ Zilly) ©)
and the relaxation times from the homogenous balance relations as
W; — Wi eq
o v ned 6
Ti BV, (6)

Note that the definition of the non-parabolicity factors H; only enters the definition
of the higher-order mobilities whereas the carrier mobility 1, is not affected (wo = 1).
We also consider so-called parabolic models where the influence of H; is neglected, be-
cause it is still not clear how to best extract the tensors U; from a full-band simulation
where the wave-vector k is not zero in a band-minimum as opposed to analytic-band
models. However, the model still contains the full-band information through the mobil-
ities and relaxation times.

3.1 Consistent Bulk Parameter Models

We define consistent models as those which exactly reproduce the even moments w;
and the fluxes V; (i < N/2 — 1) from the Monte Carlo simulator under homogenous
conditions. Furthermore, we require that all parameters of the model can be determined
under homogeneous conditions. This results in models with 'no knobs to turn’ [13].
Having too many adjustable parameters is a particular inconvenience inherent in many
energy-transport models based on analytical models for the mobilities and relaxation
times [6, 13].

e A non-parabolic six moments (NPSM) model is obtained by empirically setting
Us = (35/9)w3B°Hs. The quantity 3 = (3/5)wz/w? is the kurtosis of the
distribution function and indicates the deviation from a heated Maxwellian dis-
tribution for which 8 = 1 holds (for parabolic bands). The parameter ¢ = 2.7
was obtained by a best fit of ws under homogeneous conditions. A consistent
parabolic representation (PSM) is obtained by setting H; = 1 and using different
higher-order mobilities.



e A non-parabolic energy-transport (NPET) model is obtained by assuming a heated
Maxwellian distribution to calculate a relationship between ws and w; which
gives Uy = (10/9)w?H. The NPET model can be written in heat-flux form
(HFET) (cf. (4)) and the parabolic representation (PET) is obtained by setting
H; =1

e The generalized hydrodynamic model (GHDM) [2] is based on the flux equations
(3.1) and various approximations for the tensors U* and W;. In addition, the
quantity 7* = m*(u?)/(3kg) is used instead of w;. This modifies the balance
equations where a modified energy relaxation time 7 is required to account for
this variable transformation. Since all quantities are expressed as functions of 7*
the GHDM is difficult to compare with the models based on w; and a practical
evaluation is mandatory.

3.2 Simplified Energy-Transport Models

The energy-transport models given above require the modeling of two mobilities, one
relaxation time, and one or two non-parabolicity factors. Since these models are not
always available several simplified models have been proposed which are considered in
the following. These models aim at eliminating the energy-flux mobility from the equa-
tion system by assuming p1 = ruo with r close to unity. This assumption introduces an
error in the energy-flux even under homogeneous conditions but does not influence the
homogeneous current. More severe is the assumption of a constant energy-relaxation
time which also influences the current.

e In [13] Tang et al. proposed to approximate 4y, as 0.8 and to empirically set
0; in the range 0.1 — 0.2. Thus the energy-flux mobility is removed from the
equation system. Here, we model U; by a multiplicative factor H; in contrast to
the additive factor proposed in [16]. We do not expect this to give significantly
different results, however.

e A standard parabolic energy-transport (SPET) model as implemented in device
simulators such as DEsSIS [17] or MINIMOS-NT [18] can be obtained by setting
H, =1,0, = 1,and §; = 1. Again, only the carrier mobility enters this equation.
Furthermore, a constant energy-relaxation time 7, = 0.35 ps will be assumed.

4 Comparison of Macroscopic Transport Models

To compare the performance of these transport models we simulated a series of double-
gate MOSFETSs similar to the ones used in [19] and compared the results to self-
consistent full-band Monte Carlo results [15]. The gate length was varied from 250
down to 25 nm while the silicon layer thickness was set to tg; = L, /4. To reduce the
Monte Carlo calculation time for the longer devices tg; was limited to tg; < 12.5 nm.
To avoid too high electron temperatures in the contact regions, the doping concentration
was increased to 2 x 102 cm ™2 in the source/drain regions.

For the accurate description of carrier transport in sub-micron devices the quantiza-
tion and its influence on the transport parameters inside the channel has to be consid-
ered. However, it is important to clarify whether the models can capture the non-local
transport inside short-channel devices first before adding additional complexity to the



description. In the following quantum-mechanical effects are neglected which should
give a pessimistic estimate of the validity of the respective transport models since the
quantization of the energy-levels reduces the mean free path.

Another critical issue is the treatment of surface scattering. Since there is still no consis-
tent way of transferring microscopic surface scattering models used in the Monte Carlo
code to macroscopic models, the surface scattering parameters have to be calibrated.
Because each model gives a slightly different carrier distribution inside the channel this
calibration is not unique. Considerable research on this topic is still required.

Even without surface scattering, the full-band channel mobilities were found to be dif-
ferent from the bulk case because of the mere presence of the interface not accounted
for in the tabulated models. We introduced this effect by scaling all channel mobilities
with a constant factor (= 0.92) which was determined independently for each model
from the simulation of a 250 nm MOSFET biased at Vo = 1V and Vp = 100mV.
This effect is regularly calibrated together with the surface mobility model.

The simulated output characteristics are shown in Fig. 1. All models give good results
for the 250 nm device whereas for the short-channel device the results differ signifi-
cantly. From the bulk parameter models, the six-moments models give the best results,
the energy-transport models overestimate the currents by about 14%, while the drift-
diffusion model underestimates it by about the same amount. When the heat-flux is
reduced by 85 — 90%, the error in the currents stays below 10% for all variants of
the energy-transport model. This improvement is linked to the more accurate veloc-
ity profile shown in Fig. 2: The six-moments models are in good agreement with the
Monte Carlo results while the energy-transport models deliver the familiar overestima-
tion which can only be controlled by reducing the heat-flux. The errors in the drain
current and the quasi-static transit frequency [15] relative to the Monte Carlo results are
shown in Fig. 3 and Fig. 4.

5 Conclusions

From this small set of simulations we might give some rough guidelines: first, the accu-
racy of the drift-diffusion model decreases rapidly for gate-lengths shorter than 100 nm,
particularly when transit frequencies are calculated. Secondly, energy-transport models
which only use an estimation for the energy-flux mobility do not lose much accuracy. It
is important, though, that the heated Maxwellian assumption is alleviated by empirically
reducing the heat-flux by about 90%. With this measure energy-transport models can be
used for gate-lengths down to 50 nm at the price of having one empirical fit-parameter
and thus some uncertainty. Finally, the parabolic six-moments model gives good results
for gate-lengths as small as 25 nm. In addition the six moments models give the kurtosis
which can be used to describe the distribution function beyond the heated Maxwellian
approximation and thus to model hot-carrier effects more accurately.
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Figure 1: Comparison of the simulated output characteristics for the 50 nm deviceat Vg = 1V.
The bulk parameter models are shown on the left while the other models are shown on the right.
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Figure 2. Comparison of the simulated velocity profi les for the 50nm deviceat W& = Vp =
1V. The bulk parameter models are shown on the left while the other models are shown on the

right.
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