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Abstract
We present computer analyses of I-V and C-V characteristics based on an enhanced
transport model, where the tunneling current through Schottky and MOS structures
with a very thin interface insulation layer is properly included. Assuming a tunneling
transmission probability Ttr through a potential-dependent barrier height in our model,
which is calculated by the Global Matrix Method, the conformity of experimental and
simulated data is significantly improved.

1 Introduction
Current transport mechanisms through structures with very steep doping profiles and
narrow space charge regions including a very thin isolation layer are still not
completely understood. Various sophisticated analytical models describing the
tunneling effect in Schottky structures have been developed [1-3], but they hardly take
into account the whole complexity of mutual interactions of different cooperating
current flow mechanisms through the interface. In previous work [4,5] the tunneling
effect had been included in the transport model by adding tunneling to the general
generation-recombination term in order to improve the agreement between
experimental and simulated characteristics.

2 Transport Model
The resulting compact formula for the total current flow comprehends drift and
diffusion, thermionic emission, tunneling, Shockley-Read-Hall generation and recom-
bination, Auger recombination, impact ionization, and their mutual interactions. In the
case of a N-type semiconductor, the hole current for can be neglected, and thus we
may write
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where the tunneling current is given by
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and nSRH, nIMP, nTUN denote the virtual concentrations of free carriers, which describe



the contributions of the individual generation-recombination mechanisms:
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All other symbols have their usual meaning. It can be clearly seen that the tunneling
transmission coefficient Ttr has a direct impact on the tunneling current and the
thermionic emission velocity. The inclusion of tunneling in the model improves the
agreement between simulated and experimental I-V characteristics significantly;
however, some non-negligible discrepancies still remain. Hence, as further
enhancement, we additionally take a thin interfacial insulating layer into account by
including the tunneling transmission probability Ttr through the layer. Employing the
Global Matrix Method and splitting the Schrödinger equation over N intervals with
approximately constant energy values Ei (corresponding to the mean value of the
potential barrier Ec(x) in then i-th interval), we arrive at [6]
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For the global transfer matrix, we first determine
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where Si is the wave transfer matrix between the intervals i and (i-1) and Pi is the
transfer matrix for wave propagation through the potential barrier of thickness di. Here
it is essential to introduce a voltage-dependent potential barrier height for the
interfacial isolation layer (Fig.1). The tunneling transmission coefficient Ttr can then
be calculated from the global transfer matrix
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The electric charge located at the interface traps reads
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where Dit is the energy-dependent interface trap density as obtained from experiment.
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Fig. 1. Interface trap density Dit as experimentally obtained from C-V measurement.



3 Experimental Results and Discussion
The I-V characteristics simulated with this new improved model conform very well
with experimental findings. An example is the GaN Schottky diode the characteristics
of which is shown in Fig. 2.
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Fig. 2. Voltage-dependent potential barrier and I-V characteristics at the Schottky interface.

It is evident that using the simple thermionic emission model as well as the complex
model without voltage-dependent potential barrier of the interfacial layer leads to an
intolerable discrepancy between simulation and experimental data, whereas the new
approach yields excellent agreement.
The I-V and C-V characteristics for the MOS structures were simulated with the oxide
thickness varying from 1.5 nm to 4 nm (Fig. 3).
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Fig. 3. Band gap diagram and charge at interface state of simulated MOS structure.

For oxide thickness ≥ 3 nm, we observe a behavior of the C-V characteristics typical
of MOS structures (Fig. 4) [7]. By decreasing the thickness of the oxide layer below
3 nm the shape of the C-V curves changes significantly in the strong inversion regime,
which can be attributed to increasing conductivity due to tunneling and other
quantum-mechanical effects. When the thickness of the isolation layer is smaller than
2 nm, the I-V and C-V characteristics attain the shape typical of Schottky structures.
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Fig. 4. Simulated C-V and I-V characteristics of MOS structure.

4 Summary
An advanced model of current transport mechanisms through Schottky and MOS
structures with very thin interfacial isolation layer has been presented. The
introduction of a potential-dependent barrier height in the calculation of the tunneling
transmission coefficient from the global transfer matrix improves the agreement
between experimental and simulated data significantly.
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