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Abstract

In this paper, we have carried out a numerical simulation of FinFETs. The model is
based on 1D non-equilibrium Green’s function (NEGF) along the channel and 2-D
Schrödinger equation in the confined cross section and provides insights into the per-
formance of FinFETs with ultra small channel cross section. The simulation results of
FinFETs show normalI-V characteristics with great potential in scalability even when
the gate length is below 5 nm with 2-by-2 nm channel cross section.

1 Introduction

Double gate (DG) or triple gate (commonly known as FinFETs) MOSFETs possess su-
perior gate controllability in both off and on states. Their (for DG, it is restricted to
vertical type only) compatibility with the planar process makes them the strong con-
tender in sub-65nm CMOS technology nodes. There has been extensive research work
performed regarding DG-FETs, e.g., in [1]. For FinFETs or nanowire devices, because
of the 3D nature of the structure, it is a formidable task to solve the current-carrying
Schrödinger equation directly, even with methods like NEGF [2].
In this work, we present a hybrid approach to the quantum mechanical (QM) simulation
of 3D FinFET/nanowire structures, which captures the carrier confinement in the cross-
section of the fin/wire and the ballistic (including tunneling) transport along the channel
direction. The computation cost for a sub-20 nm FinFET is quite affordable. Compared
with the DG structure, FinFETs shows a better scalability andIon/Ioff ratio. The scal-
ing limit is also revealed (it all depends on the channel length/cross-section dimension
aspect ratio). Another benefit of using 3D QM simulation is that without proper multi-
dimension quantum transport modeling, the doping profile extracted based on measured
electrical data may be grossly distorted and thus deemed unphysical.

2 Model Description

The 3D numerical model with quantum mechanics, which we have developed, is based
on: 2D Schrödinger equation in the cross section, 1D NEGF along the channel direc-
tion, and 3D Poisson’s equation in all real-space dimensions. In this method, the most
important technique is to separate a 3D QM function into two parts: in the orthogonal
section and along the channel. A simple numerical implementation of this technique
is based on tensor-product mesh with finite difference method. Then, there are two
different equations to solve, NEGF for Schrödinger equation with open boundaries on



two ends of the channel and eigenvalue problem in the cross section. Compared to
a complete 3D numerical simulation, this method reduces computational complexity
considerably.
For the cross sections of channel, the 2D Schrödinger equation is solved directly for
eigenenergies and eigenwavefanctions of the Hamiltonian. Since in every slice, the
wavefunction is confined in the device region, so the energy level, which can be called
“mode energy”, is discrete. The shape of the cross section can be arbitrary and the
limit is that the cross section varies gradually along the channel. The density of states
corresponding to three lowest modes in a rectangle slice are shown in Fig. 1. The
confinement in the region causes disjoint peaks in the density of states for each mode.
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Figure 1: Density of states in cross section for three lowest subbands. The peak value
of the density is normalized to unity. The dimension of the cross-section for the silicon
slab is3× 3 nm2 andtox = 1 nm. Bias is set to zero.

Treating the mode energy as the effective 1D potential energy, NEGF along the channel
is solved for different mode separately. In this approach, we must understand that the
total energy of particle can be separated into longitudinal kinetic energy and transverse
potential energy, while the mode energy is the sum of these two parts. A self energy
matrix is used to represent the disturbance due to the open boundary and scattering in
the device region in NEGF method. It only has diagonal elements. From the density
matrix, which is obtained form 1D NEGF, the density of states along the channel is
calculated [2].
Constructing 3D density of states from the longitudinal density of state and wavefunc-
tions in cross-section is straightforward: need only to multiply the former with the
square of the amplitude of wavefunction. The particle density at this energy is then
the product of the 3D density of states and the distribution function. The 3D position-
dependent particle density is the summation of that at all energy levels in every mode
(subband). The channel current can be obtained from the density matrix from NEGF.
We show the electron density in several cross sections of different size in Fig. 2. It
is noticeable that the electrons peak at the center of the cross-section when the silicon
slab is quite narrow. When the slab becomes wider, the peak evolves to a crater, which
validates the prophesy about quantum confinement by physical conceptions.
With the electron density we have calculated the Poisson’s equation should be iterately
solved. For Poisson’s equation, the boundary conditions are set to be as follows: (1)
At the gate contacts, the gate vacuum potential is determined from the gate bias voltage
and workfunction of the contact materials. (2) At the source/drain contacts and other
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Figure 2: The profile of electron density for the cross sections at the begin of the channel
(x = 0). The sizes of channel cross sections are2× 3 nm2 (left), 5× 3 nm2 (middle),
and8× 3 nm2 (right). Bias is set to zero.

open boundarys, the natural Neumann boundary conditions are imposed, which permit
potentials to float to whatever values necessary to ensure the charge neutrality at these
boundaries [3]. By using Newton iterative method with “fixed” quasi-Fermi level this
numerical implementation has a gratifying convergence behavior.

3 Simulation Results and Discussion

With this method, we have simulated several FinFET devices of different size. In Fig. 3,
it is shown that the device with thinner slab has much higher threshold voltage. This is
a reasonable result of tighter quantum confinement, which forces the inversion layer to
swing away from the interface of channel and gate oxide. Since the tunnelling current
increased greatly with the reduction of gate length, the threshold voltage decreases too,
and the switch-off of channel becomes difficult. Here, we define the threshold voltage
as the gate voltage when the channel current is 1nA. Relative to this, thinner channel
device has much better subthreshold slope characteristic and very low off-current.
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Figure 3: TheIDS − VGS curves for FinFET of3 × 3 nm2 and2 × 2 nm2. The oxide
thickness is 1 nm, and the gate length is 10nm, 7.5nm and 5nm.VDS = 0.7V . Here we
use the same gate work function (4.05eV) for all the devices.

Fig. 4 plots the the on-off current ratio of the devices as the channel length changes from



10nm to 5nm. Here we define the on-current as the drain current whenVG = 0.9V and
VDS = 0.7V , and the off-current as the drain current whenVG = 0 and VDS =
0.7V . In this figure we also compare them with the simulation result of a double gate
MOSFET [1]. Although the ratio of all devices is deteriorated with the decreasing gate
length, the superiority of FinFET becomes more distinct. Benefited from its better gate
control ability, FinFET has a much higher ratio than DG device, especially when the
gate length is less than 10nm.
In Fig. 5, the DIBL characteristic of devices are plotted and the lower curve has a
better performance. The two FinFET devices exhibit the same slope with the decreas-
ing gate length, while DG has a higher slope. The curves shows that when channel
dimensions equal to10× 3× 3 nm3 and7× 2× 2 nm3, the devices have similar per-
formance. Therefore, to acquire acceptable device performance, retaining the channel
length/cross-section dimension aspect ratio is essential.
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Figure 4: The device on-off current ratio
vs. gate length curves for FinFETs and
DG MOSFETs.
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Figure 5: The device DIBL characteristic
vs. gate length curves for FinFETs and
DG MOSFETs.

4 Conclusions

With the quasi-3D numerical model we have developed, FinFET structures with ultra-
thin channel and gate oxide are simulated, the ballistic transport along the channel is
accounted for by the application of NEGF. The results show that the nanoscale FinFET
has an outstanding scalability beyond DG devices.
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