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Abstract

We study the calculation of quasi-bound states in nMOS inversion channels and their
impact on direct tunneling currents through the dielectric layer. For typical device pa-
rameters, the gate leakage in inversion is dominated by this tunneling component. How-
ever, a strong inaccuracy arises, if the eigenvalues of the closed system are used for the
quasi-bound state tunneling current. We propose simple correction functions to the
closed-boundary eigenvalues calculated by the triangular approximation which allows
to account for both, continuum and quasi-bound state tunneling in an efficient manner.

1 Introduction

The modeling of gate current due to direct tunneling through the gate dielectric layer
of CMOS devices has been of increasing interest in recent years. There is strong ev-
idence that under inversion, tunneling happens via quasi-bound states (QBS) in the
inverted layer, while under depletion and accumulation, the established Tsu-Esaki for-
mula, which is based on a continuum of states, must be used [1]. Implementations in
common device simulator packages still rely on the Tsu-Esaki formula in both cases,
which may be due to the cumbersome numerical procedures associated with the QBS
approach. However, no comparisons between the continuum and QBS approaches have
yet been reported. We study the applicability of both models for nMOS devices with a
doping in the range of 1×1018 cm−3 up to 9×1018 cm−3 and gate dielectric thicknesses
of 1.0 nm up to 3.0 nm.

2 Tunneling from Continuum versus Quasi-Bound States

Calculation of tunneling currents is traditionally based on the assumption of a three-
dimensional continuum of states at both sides of the dielectric and the conservation of
parallel momentum. Then, the tunneling current can be described by the Tsu-Esaki
formula [2]

J3D =
4πqm3D

h3

∫ Emax

Emin,1

TC(Ex, mdiel)N(Ex) dEx , (1)

where TC(Ex, mdiel) is the transmission coefficient and N(Ex) the supply function.
Two electron masses enter this equation: the density-of-states mass in the plane parallel
to the interface m3D = 2m∗

t + 4
√

m∗
tm

∗
l , which, for (100) silicon with m∗

l = 0.92m0
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Figure 1: Conduction band profile of an nMOS
with a doping of 10

18 cm−3 and tdiel=2 nm at
1 V bias. Calculation of the eigenvalues with
closed boundary conditions results in spurious
QBS wave functions.
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Figure 2: Transmission coefficient of the left
structure. For E < Emin,1 the calculation
efficiently yields the quasi-bound state energy
levels which perfectly agree with their closed-
boundary pendants.

and m∗
t = 0.19m0 equals 2.052m0, and the electron mass in the dielectric mdiel, which

is commonly used as fit parameter [3].
However, in the channel of inverted MOS devices, the strong electric field leads to
quantum confinement and the assumption of continuum tunneling is no more justified.
If assumed that the wave function does not penetrate into the gate, discrete energy
levels can be identified. However, it cannot be assumed that electrons tunnel from these
energies, since for their calculation zero wave function penetration was postulated. This
leads to a paradox which was addressed by MAGNUS and SCHOENMAKER [1]: How
can a bound state which has vanishing current density, lead to tunneling current? Taking
a closer look at the conduction band edge of an nMOS in inversion (see Fig. 1) reveals
that only quasi-bound states lead to tunneling current [4]. The symbols E1 and Ψ1

denote the energy level and the wave function of a quasi-bound state. In contrast, bound
states are formed at energies for which the wave function decays to zero at both sides
of the dielectric and are therefore not encountered in typical nMOS devices.
The QBS tunneling current is proportional to

∑

ni/τi where ni and τi denote the car-
rier concentration and the life time of the QBS with index i, respectively. Several meth-
ods have been proposed to calculate the quasi-bound states and their respective life
times [5]. One possibility is to calculate the closed-boundary eigenvalues of the whole
structure shown in Fig. 1 with zero boundary conditions. With this method, however,
spurious states arise (E2 and Ψ2 in Fig. 1) which are due to the artificial boundary condi-
tions. These spurious states must be removed after the calculation [6]. A more efficient
approach is based on an evaluation of the transmission coefficient resonances [7]. We
used a recursive transmitting-boundary method which is more stable and efficient as
the commonly applied transfer-matrix methods [8]. The two approaches are compared
in Fig. 2, where the location of the closed-boundary eigenvalues is indicated by lines.
Perfect agreement with the more cumbersome closed-boundary approach is achieved.
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Figure 3: Current density for different bulk
doping at a dielectric thickness of 1.4 nm. The
Tsu-Esaki formula fails to reproduce the QBS
tunneling.
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Figure 4: Lateral (left) and transversal (right)
life times as a function of the gate bias for
NA = 5 × 10

18 cm−3 and different dielectric
thicknesses.

To account for tunneling current from both, continuum and quasi-bound states, (1) must
be replaced by

J = J2D + J3D =
kBTq

π~2

∑

i,ν

gνm‖

τν(Eν,i(mq))
ln

(

1 + exp

(

EF − Eν,i

kBT

))

+
4πqm3D

h3

∫ Emax

Emin,2

TC(Ex, mdiel)N(Ex) dEx ,

where the symbols gν , m‖, and mq denote the valley degeneracy, parallel, and quanti-
zation masses (g = 2: m‖ = mt, mq = ml and g = 4: m‖ =

√
mlmt, mq = mt),

τν(Eν,i) is the life time of the quasi-bound state Eν,i, and the integration in the Tsu-Esaki
formula starts from Emin,2 as indicated in Fig. 1. In Fig. 3 the different current compo-
nents are compared for example devices. Setting the lower integration level to Emin,2

shows that for cold-electron tunneling, QBS tunneling is the dominant mechanism. Us-
ing Emin,1 as lower integration level makes the calibration for different substrate doping
necessary, therefore the QBS component cannot be neglected. In recent works the 3D
tunneling current is often neglected and only QBS tunneling is taken into account. This,
however, is also problematic in the case of hot-carrier tunneling [9] or tunneling from
accumulation layers where the continuum states can be occupied strongly. It is therefore
mandatory to account for both, QBS and continuum tunneling.
The life times τν(Eν,i) can be calculated from the resonance widths of the transmission
peaks in Fig. 2. However, it was shown that the quasi-classical approach

τν(Eν,i) =

∫ x

0

(2mν/(Ec(ξ) − Eν,i))
1/2

TC(Eν,i)
dξ , (2)

with Ec(x) = Eν,i, accurately reproduces the results of the more sophisticated calcu-
lation procedures [10]. The life times of longitudinal and transversal eigenvalues are
shown in Fig. 4 as a function of the gate bias.
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Figure 5: Open- and closed-boundary eigen-
values as a function of the gate bias for NA =

5 × 10
18 cm−3 and tdiel = 1.4 nm, compared

to the simple approximation.
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Figure 6: Comparison of the full QBS ap-
proach (circles) with the approximation (lines)
for different substrate doping and dielectric
thicknesses.

Still, the detection of the transmission resonances to get the open-boundary eigenval-
ues is costly and not feasible for large-scale device simulation. We compared the re-
sults of the frequently applied triangular well closed-boundary approximation Eν,i =

−zi(~
2/2mν)1/3E2/3 with zi being the zeros of the Airy function and E the electric

field to the open-boundary eigenvalues as shown in Fig. 5. If the closed-boundary eigen-
values are corrected by an empirical bias-dependent fit function f(VGB) = α − βVGB

with α = 0.93 and β = 0.03 V−1 for the longitudinal and β = 0.05V−1 for the
transversal eigenvalues, very good agreement was achieved.

3 Results and Conclusions

The current density applying (2) for a wide range of devices is shown in Fig. 6 and it
can be seen that the empirical fit yields excellent agreement to the QBS-based compu-
tations. Thus, an easy and stable formula for the evaluation of quantum and continuum
tunneling in CMOS devices is achieved, which only poses small additional effort and
can be readily implemented in device simulation packages.
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