
Anisotropic Laplace Refinement for Three-Dimensional
Oxidation Simulation

W. Wessner, C. Hollauer, A. Hössinger, and S. Selberherr
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Abstract

We present a computational method for three-dimensional tetrahedral mesh refinement
according to the demands of oxidation simulation. The main focus lies on two major
problems. First, the start-up condition of oxidation claims an initial mesh preparation
which is done by the so called Laplace refinement, second the transient conversion of
silicon (Si) to silicon dioxide (SiO2) forces a high spatial resolution in a small area
around the material interface which shows the need of adaptive refinement on demand.
More over our approach takes anisotropy into account to keep the amount of elements
small compared to strict isotropic refinement.

1 Introduction

Oxidation, by the means of a process step involved in the fabrication of integrated cir-
cuits (IC), is an directional and surface near process step. This means that the interesting
simulation region is near the surface and therefore it is important to guarantee a good
spatial resolution at the skin of the simulation domain.

This can only be achieved efficiently by anisotropic meshes. Strict isotropic three-
dimensional regular meshes are not practicable for realistic structures due to required
high resolution compared to the size of the simulation domain. The demand on calcu-
lation time and the limitation of memory requires anisotropic meshes.

The generation of small, strongly anisotropic, and unstructured mesh layers by three-
dimensional mesh generators is, unfortunately from a technology point of view, still
something of an art, as well as a science [1]. A more robust way is to generate mostly
isotropic coarse initial meshes for instance with a Delaunay mesh generator, followed
by a mesh adaption post processing step on demand. A means to an end for this task is a
robust grid refinement step which is based on tetrahedral bisection. One way to increase
spatial resolution and to take anisotropic mesh refinement at the same time into account
was shown in [2]. The basic idea in this work is to introduce a metric tensor function.
The initial mesh refinement is based on the solution of the Laplace equation, while the
dynamic adaptation observes the diffuse interface function which describes the moving
boarder between silicon and silicon dioxide.



2 Anisotropic Metric

The idea used in our approach is to apply a combination of rotation and dilation to
define an anisotropic metric. The dilation is represented by three scalar values λξ, λη

and, λζ , respectively. Using (~ξ, ~η, ~ζ) and (λξ, λη, λζ) we define two matrices

R :=





ξx ηx ζx
ξy ηy ζy
ξz ηz ζz



 and S :=





λξ 0 0
0 λη 0
0 0 λζ



 which leads to M := RSR
T . (1)

The anisotropic metric M is a tensor function which varies over the domain M =
M(x, y, z). The tensor function is symmetric and positive definite which allows to use
this tensor as a metric tensor.

3 Laplace Refinement

Our idea is to use the solution of Laplace’s equation as approximation for a surface
distance function. The imagination is based on electrostatic field calculations of the
plate-capacitor. A typical plate-capacitor structure is formed by two coplanar metal
planes which are connected to a voltage supply. We neglect the surrounding area by ap-
plying zero Neumann boundary conditions at open borders of the capacitor and Dirich-
let boundary conditions at the electrodes (assumes an infinitely expanded capacitor).
Iso-surfaces of the electrostatic potential inside the plate-capacitor form also coplanar
planes which can be used as a measure for the perpendicular distance to the surface
(electrodes).
For the description of the metric tensor function, we first calculate the solution of
Laplace’s equation considering the given Dirichlet boundary conditions on the initial
coarse mesh. This approach allows to define in a very flexible way where the refine-
ment should take place. To take anisotropy into account we use the derivative of the
electrostatic potential ψ as primary stretching direction for the anisotropic metric de-
scription (1). To accomplish this task we first rotate the three axes of the Cartesian
coordinate system (x-, y-, and z-axes) so that the new y-axis is parallel to the gradient
vector ∇ψ.
At the second step we apply a dilation-factor-function λη = λη(ψ). So the dilation
along the gradient direction depends on the potential ψ. All other stretching weights
are set to unity, which guarantees a dilation only along the gradient field. According
to (1) the anisotropic metric function is now completely specified over the element.
For the three-dimensional simplex partitioning the anisotropic length of all tetrahedron
edges are calculated under consideration of

`PQ =

∫ 1

0

√

PQ
T
· M(P + t · PQ) · PQ dt. (2)

The longest anisotropic edge which transcends the maximum edge length value is cho-
sen as the refinement edge.



4 Oxidation

For the oxidation model we use analogously to [3, 4] a normalized silicon concentration
η(~x, t) = CSi(~x,t)

C0Si
where CSi(~x, t) is the silicon concentration at time t and point

~x(x, y, z) and C0Si is the concentration in pure silicon. So η is 1 in pure silicon and 0 in
pure silicon-dioxide. The oxidant diffusion is described by D∆C(~x, t) = k(η)C(~x, t).
Here D is the diffusion coefficient and k(η) is the strength of a spatial sink and not just
a reaction coefficient at a sharp interface like in the standard model for oxidation [5].
However, η(~x, t) varies during oxidation simulation with ascending time, so therefor it
is important for the convergence of the model and the quality of the computed solution
to increase the spatial resolution near the interface on demand.
The idea is to solve the Laplace equation on the initial coarse mesh with special Dirich-
let boundary conditions. Boundary conditions on the upper silicon surface which is
exposed to an oxidizing atmosphere are set to unity and the opposite part of the silicon
body is set to zero. The solution of the Laplace equation and the corresponding iso-
surfaces can be seen in the right part of Figure 1, the initial coarse mesh is shown in the
left part. For the refinement post processing step we detect those elements which hold a
solution value close to unity, all others are untouched. The orientation of the anisotropy
should reflect boundary aligned elements by the mean of short point distances perpen-
dicular to, and long point distances along the oxidizing surface. Observing the gradient
field of the solution, c.f. Figure 1(b), reflects the anisotropic compression direction and
is therefore a good choice for the anisotropic tensor function.
While performing the simulation we use η(~x, t) to identify the interface region and the
first derivative of η for our anisotropic refinement. Figure 2(b) shows the resulting mesh
at the end of the oxidation simulation caused by applying our strategy. The interface
between silicon and silicon dioxide migrates from the upper surface of the initial silicon
body downwards. The refinement procedure follows this behavior and thereby a good
spatial resolution near the interface is reached. Other regions at the simulation domain
are left untouched which guarantees the usage of an almost minimal number of grid
points.
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(a) Cubic silicon (Si) body with L-shaped sili-
con nitride (Si3Ni4) mask on top. Initial mostly
coarse regular mesh.

(b) Iso-surfaces of Laplace’s equation solution
and according gradient field vectors on initial
coarse mesh.

Figure 1: Calculations for anisotropic refinement on the initial coarse mesh.

(a) Highly anisotropic thin mesh layer after
Laplace-Refinement in the upper region of the
silicon body (input for oxidation).

(b) Anisotropic mesh after oxidation simulation.
The refinement procedure followed the moving
interface of Si and SiO2.

Figure 2: Mesh adaption during oxidation simulation.


