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Abstract

We investigate the behavior of the resistance of a three-dimensional via during the evo-
lution of an intrinsic void. The presented method is eligible for both copper and alu-
minum interconnects. An analysis of the mean current density over the void surface is
also carried out.

1 Introduction

Electromigration is the main reliability issue in IC designs, which can trigger a system
failure at some undefined future time [1]. The phenomenon is particularly likely to af-
flict thin, tightly spaced interconnect lines of deep-submicron designs. Electromigration
is an atomic transport process which results from momentum transfer to the constituent
metal atoms due to collisions with the current conduction electrons. As atoms electro-
migrate, there is a depletion of material “upstream” and an accumulation “downstream”
at sites of flux divergence. This can lead to the formation and growth of voids at points
of material depletion, causing a large increase in electrical resistance. On the other
hand, accumulation of material may cause dielectric cracking and the formation of an
extrusion, resulting in a short circuit between adjacent lines. The development of in-
trinsic voids, which leads to interconnect failure goes through two distinctive phases.
These phases exhibit not only different influence on the operating ability of the inter-
connect but are also based on different physics. The first phase is the void nucleating
phase. In this phase no electromigration generated voids are present and there is no
significant resistance change. The second phase begins when a void is nucleated and
visible in SEM pictures [2]. This is the rapid phase of the failure development. The
void expands from its initial position (nucleation site) to a size which can significantly
change the resistance or completely sever the connection.

2 Modelling Approach

An initial void with some small radius r0 is placed on some characteristic position inside
the interconnect (Figure 1). Since most of the fatal voids are nucleated in the vicinity or
in the area of interconnect vias we consider in particular these cases. The configurable



initial void volume is V0 which is smaller than 4πr3
0/3 because the void area is confined

by sphere and boundary of the interconnect (Figure 1). Starting from the initial void
radius r0, the void radius is gradually incremented r0, r1 = r0 + ∆r1, r2 = r1 +
∆r2, ..., with ∆r1 ≥ ∆r2 ≥ ... ≥ ∆rn. For each void radius the electrical field in
the interconnect structure is calculated by means of the finite element method using a
diffuse interface approach. To obtain the distribution of the electrical potential inside
the interconnects the Poisson equation has to be solved

∇ · (σCu(φ)∇ϕ) = 0 . (1)

To imply correct boundary behavior of the electrical field on the spherical void surface
a diffuse interface approach has been applied [3]. In this approach the electrical field
in the metal and the void is calculated on the same mesh. The electrical conductivity
depends on the scalar field φ(x, y, z)

ρ(φ) =
σCu[1 + φ(x, y, z, t)]

2
. (2)

In order to obtain sufficient accuracy the scalar field φ(x, y, z, t) must be resolved on
a locally refined mesh (Figure 2). For an electrical field calculated in such a way, the
resistance of the interconnect via is also calculated [4, 5]. With growing void size the
resistance increases. The whole process is stopped when a void radius is reached for
which 100× (Ractual/Rinitial − 1) > 20%.

2.1 Average Current Density Calculation

The primary driving force of material transport at the void surface is electromigration
proportional to the tangent component of the vector current density. Since the diffuse
interface approach for the calculation of the current density ensures physical behavior
of the electrical field in the vicinity of the isolating void, the normal component of the
current density on the void surface is always zero and we can apply the formula

Jm,i = 2

∫

V ‖J‖[1− φ2
i (x, y, z)] dV

∫

V
[1 − φ2

i (x, y, z)] dV
, (3)

for the average current density over a void with radius ri. (3) expresses the averaging of
the current density weighted with finite element volume inside the interconnect. Since
φi(x, y, z) = 1 in metal and φi(x, y, z) = −1 in the void area, the term 1− φ2

i (x, y, z)
is non-zero only in void-metal interface area.

2.2 Velocity of the Evolving Void Surface

The evolution of the void is caused by material transport on the void surface and in the
vincinity of the void surface. The mass conservation law gives the mean propagation
velocity vi of the evolving void-metal interface

vi =
DV

kTσ
eZ∗Jm,i, (4)

here Dv is the vacancy diffusivity and Z∗ effecitve charge number of vacancies. The
(4) is valid for all void shapes.



3 Simulation Results and Discussion

As we can see from Figure 4, the average current density on the void surface increases
with the void size. Both, current density and resistance, exibit a very similiar dynamic
behavior. The dynamical resistance increase is in accordance with the measurement
results presented in [1]. Compared with the earlier result [6], which assumes cubical
void shapes, our approach enables more realistic simulations.

Figure 1: Position of the growing
void. Initial position and volume are
chosen on the basis of experimental
results [7].

Figure 2: Detail of the used locally
refined mesh. φ = 1 in the grey area
and φ = −1 in the black area.

Figure 3: Typical current density
distribution picture in the vincin-
ity of the spherical void. The grey
area marks peak values of the cur-
rent density.
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Figure 4: Change of the average cur-
rent density and via resistance de-
pending on the void radius.

An open question is how to use the obtained average current density (Figure 4) for the
estimation of the void growing time (tE) up to the critical void size. In [6] a simple
formula is applied

tE =
Vc − V0

vmAs
. (5)

In this equation Vc is the critical void size, V0 is the initial void size, As is the cross
section of the interconnect in the vincinity of the growing void, and vm is the mean



velocity of the evolving void-metal interface. However, this formula is only valid in
the case of the cubical void which is a very rough approximation of the real situation.
According to the newer experimental results [7] the real void shape is significantly
better approximated by a spherical sector. In this case tE can be estimated as

tE =
∑

i

∆ri+1

vi
, (6)

assuming that for sufficently small ∆ri+1, the void radius grows from ri to ri+1 with a
constant velocity vi.
As we can see from (4), the velocity vi depends on vacancy diffusivity Dv which itself
has significantly varying values depending on the diffusion path. The electromigra-
tion assisted self-diffusion of copper is a complex process which includes simultaneous
diffusion through the crystal bulk, along grain boundaries, along the copper/barrier in-
terfaces, and along the copper/cap-layer interface. Therefore, the diffusivity applied in
(4) must be a cumulative value as used in [2]

Dv = Db + Dgb

(δgb

d

)

+ DCu/bqCu/b + DCu/NqCu/N . (7)

Db, Dgb, DCu/b, and DCu/N , represent the diffusivity through the bulk, along the grain
boundaries, copper/barrier interfaces, and copper/caplayer interfaces, respectively. δgb

is the width of the grain boundary and d the average length of a grain boundary. Coeffi-
cients qCu/b and qCu/N depend only on the layout geometry. For the feasible estimation
of tE , reliable, experimentally determined values for all relevant diffusivities are needed
and this is until now not the case [2, 7].
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