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Abstract

Recent papers on advanced semiconductor devices adopt a model calleddensity-grad-
ient correction, in which the standard electric potential acting on the carriers is modi-
fied by a non-linear term involving the carrier concentration and its second derivatives.
When applied to cases where quantum effects are not negligible, the modified model
improves the results with respect to the standard approach. The paper shows how,
starting from a straightforward derivation of the density-gradient correction from the
Schr̈odinger equation, its interpretation as an addition to the potential energy is ques-
tionable, and makes a few considerations for further investigation on the subject.

1 Introduction

In the modeling of nanoscale devices it is necessary to account for the quantum effects,
that play a non-negligible role due to the device size and to the presence of sharp vari-
ations in the electric potential. To this purpose, in the frame of a semiclassical picture
of carrier transport in semiconductors, a model calldensity-gradient correctionis of-
ten used, in which the standard electric potential acting on the carriers is modified by
a term proportional to(∇2

√
n)/

√
n, with n the carrier concentration. The adoption

of this model provides better results than the standard approach when applied to cases
where quantum effects are important. The model was proposed in [1], basing on ther-
modynamical considerations, for the case of an infinite system with no current flow. A
following paper [2] refined the model by determining the numerical coefficient of the
correction, basing on the asymptotic solution of the Wigner equation obtained by per-
turbation. Different forms of the correction are discussed in [3] and references therein.
The inclusion of the density-gradient correction is made by simply adding it to the
potential energy of the standard model, to obtain an “equivalent” field acting on the
carriers. It will be shown in the following sections that the density-gradient correction
possesses some properties that make such procedure questionable. A subtler point is
that the adoption of the correction as such violates the applicability limits of the Ehren-
fest approximation, upon which the semiclassical equations for the modeling of semi-
conductor devices are based. Further investigations on the subject are then of impor-
tance, both from the conceptual viewpoint and to provide a sound basis for the models
to be adopted in practical applications.



2 Theory

The starting point is the Schrödinger equationjh̄ ∂ψ/∂t = Hψ which, in this form,
holds for a system of particles and for a non-conservative case as well. Considering a
system of identical particles of massm and neglecting the magnetic part of the force,
the single-particle Hamiltonian readsH = p̂•p̂/(2m)+Vw, wherep̂ = −jh̄∇ andVw

accounts for the effect of the other particles and possible external forces. Here, the wave
functionψ is defined over a domainΩ, which may be infinite, and is assumed normal-
ized. The Schr̈odinger equation is easily split into two real equations by considering
the real and imaginary part ofψ. However, it is more sensible to use the expression
ψ = α exp(jβ), α ≥ 0, which reminds one of that used to derive the eikonal equation
of geometrical optics. In this case the two real equations read

∂α

∂t
= − h̄

2m

(
α∇2β + 2∇α • ∇β

)
, (1)

∂(h̄β)
∂t

+
1

2m
|∇(h̄β)|2 + Vw − h̄2

2m

∇2α

α
= 0 . (2)

The dimensions ofα2 and∇h̄β are the inverse of a volume and a momentum, re-
spectively. LettingP = α2, S = h̄β, ve = ∇S/m, Q = −h̄2/(2m) (∇2α/α),
HQ = mv2

e/2 + Q + Vw, and multiplying (1) by2α, the set of two equations (1,2)
become

∂P

∂t
+ div(Pve) = 0 ,

∂S

∂t
+ HQ = 0 , (3)

with
∫

Ω

P d3r =
∫

Ω

|ψ|2 d3r = 1 , (4)

namely, two differential equations in the unknownsα, β, the first of which is the stan-
dard continuity equation for the probability density. As for the second of (3), its limit
for h̄ → 0 =⇒ Q → 0 is the Hamilton-Jacobi equation of classical mechanics and,
as a consequence, the classical limit ofS is the Hamilton principal function [4, Ch.
VI-4]. It should also be noted that, in the limitQ → 0, equations (3) become decoupled
from each other. Without the limit, the termQ may be manipulated by considering an
ensemble ofN replicas of the particle, to find

Q = − h̄2

2m

∇2α

α
= − h̄2

2m

∇2
√

P√
P

= − h̄2

2m

∇2
√

n√
n

, (5)

wheren = NP is dimensionally a concentration. Clearly, asn is a quantity pro-
portional to the squared wave function of a single particle, its meaning is not that of
concentration in a system of interacting particles. On the other hand, it is interesting
to note that the last form ofQ in (5) reproduces that of the density-gradient correction.
The derivation above shows that such a term is inherent in the Schrödinger equation and
is derived from it without approximations. In the time-independent case (3) reduce to

div(Pve) = 0 ,
1
2
mv2

e + Q + Vw = E , (6)



coherently with the fact that in this case Hamilton’s principal function becomesS =
W − Et, with W the time-independent Hamilton characteristic function. Althoughve

plays the role of an average velocity in the continuity equation of (3) or (6), determining
the expectation value needs a further averaging: in fact, taking the usual definition of
expectation value and observing that the normalization makes the integral of∇α2 to
vanish, yields

m 〈ve〉 =
∫

Ω

ψ∗ p̂ψ d3r =
∫

Ω

α2∇(h̄β) d3r = m

∫

Ω

α2 ve d3r . (7)

3 Is the density-gradient correction a potential energy?

The second of (6) suggests thatQ is a potential energy to be added toVw. This is
not necessarily true, as shown by the calculation of the expectation value of the kinetic
energyT :

〈T 〉 =
1

2m

∫

Ω

ψ∗p̂2ψ dΩ = − h̄2

2m

∫

Ω

α exp(−jβ)∇2 [α exp(jβ)] dΩ =

=
∫

Ω

ψ∗
(

1
2
mv2

e + Q

)
ψ dΩ , (8)

showing that the presence ofQ is essential for correctly determining the expectation
value ofT . To better investigate the meaning ofQ it is useful to consider alternative
expressions of〈Q〉, like

〈Q〉 =
h̄2

2m

∫

Ω

|∇α|2 dΩ =
1

2m

(〈p̂2〉 − 〈p2
e〉

)
, pe = mve , (9)

whose derivation is straightforward and follows the same pattern as that of (8). The
first form shows that〈Q〉 is positive definite irrespective of the shape ofα. The second
one is the analogue of the definition of dispersion around the average found in classical
statistics. By analogy with the classical case one may think that the termp2

e/(2m)
provides the analogue of the convective part of the kinetic energy, whileQ provides the
analogue of the thermal part of it. By way of example, assume that at a given instant
of time the wave function be the minimum-uncertainty packet of the one-dimensional
case,

α =
1

4
√

2π
√

σ
exp

[
− (x− x0)2

4σ2

]
, β = k0x , (10)

which is normalized for anyσ. One finds〈x〉 = x0, dh̄β/dx = h̄k0, 〈pe〉 = h̄k0,
〈

p2
e

2m

〉
=

h̄2k2
0

2m
, 〈Q〉 =

h̄2

8mσ2
, 〈T 〉 =

h̄2

2m

(
k2
0 +

1
4σ2

)
. (11)

As a consequence, for a fixed〈T 〉 all non-negative values of the “convective” and “ther-
mal” parts that add up to〈T 〉 are allowed. In the particular case of a free particle, where
〈T 〉 = 〈E〉, the above shows that different values of the average momentum and dis-
persion may combine to yield the same total energy.
In view of the meaning of〈Q〉 that stems from the above observations, the assumption
that−∇Q provides an additional contribution to the field acting on the particles, in an
otherwise unchanged transport equation, becomes questionable.



4 Conclusion and historical remark

The transport equation commonly used for the description of semiconductor devices is
derived by combining the Hamilton equations for the expectation values of position and
momentum, supplemented with the Ehrenfest approximation,

d
dt
〈r〉 = 〈ve〉 , d

dt
〈pe〉 = −

∫

Ω

α2∇Vw dΩ ' −∇Vw , (12)

with the continuity equation in the phase spacer, pe. The adoption of the density-
gradient correction is equivalent to replacing the last term in (12) with−∇(Vw + Q).
This, on the other hand, yields Hamiltonian relations that can not be derived by the
standard procedure of quantum mechanichs and, moreover, violates the applicability
limits of the Ehrenfest approximation. Another difficulty is that the expression ofQ
written in terms of the carrier concentration introduces a dependence on the device
temperature, which is obviously missing in the equivalent expression ofQ in terms
of α: consensus is still lacking as for the extension of the theory from a pure state to
the statistical ensemble. Despite these aspects, the results obtained by introducing the
density-gradient correction are encouraging in several practical applications. Quoting a
recent paper, “DG theory is a macroscopic approximation to quantum mechanics ... The
theory built on this simple foundation, though obviously incomplete, has been found to
be surprisingly accurate ... in practical situations” [5]. The considerations of sections
3 and 4 provide a clue for a sound formalization of the density-gradient correction,
namely, that of seeking for a more general form of the Hamiltonian relations (12).
It is interesting to note that the analogy between the Schrödinger equation and a set of
a continuity and a Hamilton-Jacobi-like equations had been noted by de Broglie, who
introduced the concept ofpilot wave in [6]. This cost him severe criticism by Pauli
at the Fifth Solvay Conference. He resumed the idea more than twenty years later,
stimulated by the papers by Bohm introducing the concept ofquantum potential, see
e.g., [7]. The most recent paper by de Broglie on the subject is [8], published when the
author was seventy-nine years old. The density-gradient correction for a pure state is
nothing more than the quantum potential of Bohm, and is correctly identified as such,
e.g., in [3].
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