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Abstract

A method for directly measuring the inverse screening length in semiconductors in
terms of ionized-impurity concentration and lattice temperature is demonstrated, based
on a first-principle calculation of the effect of ionized-impurity scattering. No fitting
parameters are involved in the derivation, which covers a wide range of doping concen-
trations and intrinsically complies with the Mathiessen rule. A new class of integrals is
introduced in the calculation. The results are compared with the standard derivation of
the inverse screening length from the perturbative solution of the Poisson equation.

1 Motivation

Low-field measurements of carrier mobility, coupled with an analytical calculation of
the momentum-relaxation time, provide a method for a direct experimental extraction of
the dependence of the inverse screening lengthq0 on the ionized-impurity concentration
NI and lattice temperatureTL. This constitutes the basis for deriving a first-principle
model of the effect of ionized-impurity scattering on mobility.
The concept of inverse screening length is adopted in a number of microscopic models
for determining the effect of ionized-impurity scattering (e.g., Brooks-Herring, Taki-
moto, and Third-body exclusion models [1]). Such parameter, in turn, depends on the
ionized-impurity concentration and lattice temperature through the charge density.

Some important issues that play a role in the effect of ionized-impurity scattering on
the carrier mobility must be mentioned. The first issue is the questionable approx-
imation of replacing the carrier concentration with the impurity concentration in the
standard expressions involvingq0, which leads to an infinite collision cross-section at
zero concentration. A second issue is the dependence of the ionized-impurity scattering
on temperature, a third one is the different effectiveness of this type of scattering on
the majority and minority carriers, which brings about the necessity of distinct mobility
models as shown in [2], and a fourth one is the consistency of the result with the Math-
iessen rule, which is often missing in models derived from first principles.
Here it is shown that combining the definition of the momentum-relaxation time typ-
ical of the hydrodynamic transport equations [3] with the concept of screening length



provides a method for experimentally determining the dependence of the latter on the
ionized-impurity concentration and temperature. While preliminary results have been
shown in [4] for the non-degenerate case, here the theory is carried out in the full range
of significant dopant concentrations3× 1013 < NI < 1021 cm−3.

2 Theory

We begin with a set of measurements of the electron mobilityµn, carried out under
a low-field regime and different temperatures on silicon slabs, each uniformly doped
with a different impurity concentration. In such experimental condition, the two ef-
fects relevant for mobility are the phonon and the ionized-impurity scattering. In the
standard models of semiconductor devices, the two contributions are combined into an
expression for mobility based on the Mathiessen ruleµ−1

n = µ−1
P +µ−1

I , whereµP , µI

refer to the individual effects (the electron mobilityµn is used here by way of exam-
ple). In turn, the Mathiessen rule reflects the basic additivity property of incorrelated
events’ probability. The microscopic theory outlined below is carried out consistently
with such property.

First, for each lattice temperature the ionized-impurity contribution is separated from
the phonon contribution as

[µI(NI)]exp =
µn µn(NI → 0)

µn(NI → 0)− µn
(1)

Then, the experimental result is equated to a theoretical expression[µI(NI)]theor, which
is derived by directly integrating the Boltzmann Transport Equation over the momen-
tum space as a step of the formal procedure prescribed by the moments’ method [3].
This yields the macroscopic relaxation-time tensorτiv related to the ionized-impurity
scattering
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wheref is the distribution function,ui the ith component of the group velocity, andv
the valley index within the Brillouin zone. In turn,τI is the microscopic relaxation time
of the ionized-impurity scattering [5], withωv the dimensionless overlap factor of the
valley,me the average effective mass of the electrons,Zce the charge of the Coulombic
center,kv the wave vector at the valley’s bottom, andεsc the dielectric constant of the
semiconductor.

In most operating conditions of the semiconductor devices the different scattering mech-
anisms are incorrelated. Labeling the individual effects as above and lettingτ be the
total microscopic scattering time, one findsτ−1 = τ−1

P + τ−1
I + . . ., whence the Math-

iessen rule follows immediately. Note that definition (2) differs from that given, e.g.,
in [1, 6] and [7, Sect. 4.1] which for thevth valley readsτv = 〈τE〉v/〈E〉v. The lat-
ter is found by calculating the average after multiplying both sides of the Boltzmann
Transport Equation byτ and using the energyE as integration variable. Although the
calculations based on it may be less involved, such definition is eventually inconsistent
with the use of the Mathiessen rule because

〈(
∑

i

τ−1
i )−1〉 6= (

∑

i

〈τ−1
i 〉)−1 . (3)



Taking a uniform material and applying a small, time-independent electric fieldE, the
electron-distribution functionf fulfills the steady-state, uniform Boltzmann equation,
whose perturbative form leads tof ' [1+ τu • eE (d log f eq/dE)] f eq. As no hypoth-
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Figure 1: Inverse screening lengthq0 vs the impurity concentrationNI for electrons in
n-doped silicon atTL = 300 K. Squares: experiment. The continuous line interpolates
the experimental results in the degenerate region, the thin dashed line interpolates them
in the non-degenerate region. Thick long-dashed line: perturbative solution of Poisson’s
equation obtained by extending the method of [1] to the degenerate region.

esis about the form off eq is necessary for the derivation above, the result holds for both
the degenerate and non-degenerate cases. Replacingf into (2) leads, after a somewhat
involved calculation and an average over the valleys, to

NI [µI(NI , TL)]exp

exp(−ξe)Φ1/2(ξe)
=

2θ exp(−λ2q2
0)

R0(λ2q2
0 , ξe)−R2(λ2q2

0 , ξe)
, (4)

with

λ2 =
h̄2

8mekBTL
, θ =

3
√
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sc (kBTL)3/2

π3/2e3Z2
c mn

, (5)

which provides the experimental determination ofq0(NI , TL). In (4), mn is the trans-
port effective mass of the electrons,ξe the distance between the conduction-band edge
and the Fermi level normalized tokBTL (incomplete ionization is accounted for),Φ1/2

is the Fermi integral of order1/2, andR0, R2 are defined by

Rα(ρ0, ξe)
.=

∫ ∞

1

w−α dw

exp(ρ0w) + exp(ρ0 + ξe)
. (6)

3 Significance and Conclusion

The method presented here allows for the direct measurement of a rather fundamental
quantity, the inverse screening lengthq0, as a function ofNI andTL. In the authors’



knowledge, a method for measuringq0 was not proposed before. Moreover, the theory
depicted here provides the basis for modeling the contribution of the ionized-impurity
scattering to the carrier mobility, in the full range of doping concentration and temper-
ature, without the need of fitting parameters. In contrast with other methods based on
first-principle calculations, the result is consistent with the Mathiessen rule, which in
turn reflects the basic additivity property of incorrelated events’ probability. Moreover,
the direct extraction ofq0 intrinsically accounts for the differences due to the type of
dopant, specifically, to the scattering effect of a given impurity concentration on the
majority or minority carriers, which is known to be different [2]. The unphysical effect
of a diverging collision cross-section for a vanishing concentration is absent in the pro-
cedure presented here, which inherently provides the screening length in terms of the
ionized-impurity concentration.

The theory requires the definition of a new class of integrals (6). The problem of the
practical calculation of (6) had to be tackled in the frame of this investigation because
integrals of this type have not been studied before; however, further details are outside
the scope of this work and will be given elsewhere.
Finally, the results indicate a more effective screening than that found from the standard
method [1] of solving Poisson’s equation by perturbation. This is visible in the figure,
that showsq0(NI) for electrons inn-doped silicon atTL = 300 K (symbols: squares).
A power law interpolating the experiments is also shown: the continuous (thin dashed)
line refers to theNI > 1017 (NI < 1017) case. Finally, the lower, long-dashed line
showsq0(NI) as calculated from the perturbative solution of Poisson’s equation.1
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