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Abstract

This paper proposes the use of genetic algorithms for process optimization and calibra-
tion of model parameters. The main principles of these evolution inspired optimizers are
briefly explained. Afterwards, their application to two process simulation tasks is pre-
sented: (1) a layout problem in lithography processes and (2) the extraction of physical
parameters of a diffusion model. The obtained results are shortly discussed.

1 Introduction
Optimization of processes or simulation parameters often requires the use of robust,
global optimization methods. In many applications, very little a priori knowledge of
the search space is available. Thus, constraining the search space is impossible or at
least very time consuming. Furthermore, local search techniques are often not feasible
as they strongly depend on an, often intricate, search for appropriate start values [1]. Ge-
netic algorithms have been successfully applied to a wide range of different problems. A
list of applications can be found elsewhere [2]. This paper proposes the use of genetic
algorithms (GAs) as an alternative approach for optimization tasks in simulation. GAs
are very robust and perform well even with noisy data, a problem often encountered in
model calibration and process optimization applications. Moreover, with the proposed
approach, optimization with virtually arbitrary numbers of variables and objectives can
be performed fully automatically. We do not claim that the presented results cannot be
obtained with other optimization techniques. The goal of this work is to demonstrated
that GAs yield good, reproducable results for various process simulation problems.

2 Principle of Genetic Algorithms
GAs improve solutions by means of selection, recombination, and mutation [1]. GA op-
erations are performed on bit-strings; in order to evaluate solutions, these bit-strings are
decoded. Fig. 1(a) schematically demonstrates the flow of a genetic algorithm. In the
first step initial solutions are randomly created. In a second step, solutions are evaluated
according to a problem-specific objective function. The third step consists of a test for
a pre-defined termination criterion (e.g., an acceptable fitness). In the fourth step pairs
of individuals are selected according to their pay-off. The selected solutions are merged,
yielding new solutions, in the fifth step (Fig. 1(b)). A random change on the individu-
als is optionally applied in the sixth step, in order to maintain a high level of diversity
(Fig. 1(c)). The newly created solutions are evaluated thereafter, starting a new iteration
step.
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Figure 1: (a) Schematic flow of a genetic algorithm; (b) recombination: two parent so-
lutions are merged yielding two offspring solutions; (c) mutation: random alteration of
bits (genes).

3 Application to Mask Optimization
The performance of microelectronic integrated circuits strongly depends on the size of
the smallest features on the chip. In the late nineties, the microelectronic industry started
to employ various techniques that modified the geometry of the illumination and the
mask in order to improve the resolution capability of processes. Imaging in this regime,
however, is much more challenging, as the old WYSIWYG principle (What You See
Is What You Get) is not valid anymore [3]. Thus, finding optimum illumination and
mask geometries requires elaborate optimization techniques. This paper proposes the
application of a genetic algorithm to improve the performance of lithographic processes
by optimizing mask and source geometries. Merit or fitness functions are introduced
that evaluate the imaging quality of arbitrary line patterns in a specified focus range. As
a second criterion the manufacturability and inspectability of the mask are taken into
account. All simulations have been conducted using the in-house lithography simulator
of the Fraunhofer Institute IISB [4].
As an example, Fig. 2 illustrates the best geometry of a semidense lines/spaces mask after
a specified number of optimization steps performed by the genetic algorithm. The lower
row shows the corresponding process windows for the optimized mask (solid lines) in
comparison to the process window of 110nm dense lines/spaces (pitch 220 nm, dashed
lines). The goal of the optimization is to maximize the overlap between both process
windows and to obtain a manufacturable design of the mask. After 10 iterations the mask
consists of many small dark lines. The overlap between the process windows of dense
and semidense features is rather small. After 50 generations a significant overlap of the
process windows has been achieved. However, the high number of thin dark lines renders
its production unfeasible. After about 800 iterations an appropriate mask layout has
been obtained. The optimization took about 45 minutes using a 10 processor (2.66 GHz
Pentium 4) computer cluster.
In this work the following optimization problems are investigated: the first was to find the
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Figure 2: Improvement of the image performance obtained with the GA for the discrete
mask representation, upper row: mask geometry, center row: images at 250 nm defocus,
lower row: process windows.

best lines/spaces proximity curves, that is, mask geometries and illumination parameters
which guarantee optimum lithographic performance over a range of pitches from dense
features (pitch � 220 nm) to almost isolated features (pitch � 1000 nm). Afterwards, the
optimization method is used to conduct an evaluation of different mask and source op-
tions. Finally, the optimization scheme is applied to 2D features (contact holes), yielding
first promising results. A detailed discussions on the procedure and on results can be
found elsewhere [5].

4 Application to Calibration of Diffusion Model Parameters
Self-interstitials generated by ion implantation aggregate during subsequent thermal an-
neals into extended defects [6]. These maintain a non-equilibrium self-interstitial super-
saturation in their vicinity which, in turn, enhances the diffusivity of dopants such as
boron. For the simulation and optimization of annealing steps physical and well cali-
brated models for these reactions are essential. In the current work we implemented a
one-dimensional model accounting for the capture and emission of interstitials into the
PDE solver PROMIS 1.5. The simulator was then linked to the GA to optimize values
for the formation energies of small interstitial clusters (with size � 10), the stacking-
fault energy of � 113 � defects, and the self- diffusion coefficient DIC �I � CSi of silicon
via self-interstitials at different temperatures. Different kinds of experimental data were
combined for the optimization with the GA. Fig. 3 shows experimental data [7, 8] for the
supersaturation of interstitials which is the key parameter for transient enhanced diffu-
sion. The dashed lines show the excellent agreement for temperatures of 600 and 800 � C
between simulations and those experiments which were used for the optimization with
the GA. The optimization time was about three days on a single processor (DEC Alpha
666 MHz) machine.
Furthermore, Fig. 3 clearly evidences that our model is able to predict independent ex-
perimental data obtained at 700 and 740 � C, demonstrating the predictivity of the model
as well as the consistency of the optimized parameter set. Whereas this paper discusses
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Figure 3: Comparison between experimental supersaturation and simulations with the
optimized parameter set: Simulation of data used during optimization (dashed lines) and
prediction of complementary data (solid lines).

the benefits of the GA, a detailed discussion of the experiments and the physical model
is being given elsewhere [9].

5 Conclusions
A genetic algorithm has been presented which is widely applicable to optimize parame-
ters of physical models, process parameters, and mask design.
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[2] T. Bäck, F. Hoffmeister, and H.P. Schwefel. Applications of evolutionary algorithms – 4th

extended edition. Technical Report SYS–2/92, University Dortmund, 1993.
[3] A. K. Wong. Resolution Enhancement Techineques in Optical Lithography. In Tutorial Texts

in Optical Engineering, TT47. SPIE Press, 2001.
[4] A. Erdmann and W. Henke. Simulation of optical lithography. In Optics and Optoelectronics

– Theory, Devices and Applications, Proc. SPIE 3729, page 480, 1999.
[5] T. Fühner, A. Erdmann, R. Farkas, B. Tollkühn, and G. Kókai. Genetic algorithms to improve
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