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Abstract

In this paper, we investigated the quantization in the MOSFET inversion layer by solv-
ing the Schr̈odinger EQuation (SEQ) in the momentum space according to the 3D Full
Band (FB) structure of silicon. For the first time, we explain the dependence of the
eigenvalues on the momentumk in the plane of transport and discuss its periodicity.
Furthermore, we discuss the solution of the SEQ around the energy minima, compare
the Non-Parabolic model with the FB results, and propose a new efficient procedure to
achieve an accurate energy dispersion in the subbands.

1 Introduction
It has been recently recognized that even decananometric MOSFETs are not ballistic
[1], and that the scattering along the channel and close to the drain can significantly de-
grade the on-current [1, 2]. With a supply voltage still around1V for high-performance
devices [?], a realistic modeling of nano-MOSFETs demands the energy dispersion
of the 2D electron gas well above the subband minimum, where the accuracy of the
conventional non-parabolic models cannot be given for granted. This paper analyzes
the possible of effects of subband quantization beyond the conventional parabolic or
non-parabolic models.

2 Full Band Solution
We denote withz the direction of the 1D confining potentialU(z) and withK=(k, kz)
the total electron wavevector. If we now expand theunknowneigenfunction in terms of
Bloch functions with coefficientsA(n)

µ (k, kz) [3], we find that the SEQ can be written,
for eachk vector in the transport plane, as the eigenvalue problem:

E
(n)
FB(k, kz)A(n)

µ (k, kz) +
2π

L

∑

n′,k′z

UT (kz − k′z)A
(n′)
µ (k, k′z)f

(n,n′)
kz,k′z

(k) =

εµ(k)A(n)
µ (k, kz), f

(n,n′)
kz,k′z

(k) =< un,k,kz |un′,k,k′z > (1)

whereUT (qz) is the Fourier Transform of theU(z), L is a normalization length in the

quantization direction andεµ(k) is the eigenvalue.E(n)
FB(k, kz) andf

(n,n′)
kz,k′z

(k) denote
the energy in then-th band of the 3D FB structure and theoverlap integralsof the
periodic partsun,k,kz of the Bloch functions, respectively. Both of them were obtained
according the well-established Non-Local-Pseudopotential method [4]. In the deriva-
tion of Eq.1 it is assumed thatUT (qz + gz) ¿ UT (qz)i, wheregz is thez component
of a vector in the reciprocal lattice space.



Throughout this paper we discuss different approaches to solve the SEQ. For a fair com-
parison, all the methods will be used with the sameU(z) obtained from a conventional
Schr̈odinger-Poisson solver with parabolic bands. As it can be seen, Eq. 1 is an eigen-
value equation for eachk value, and, furthermore, the calculation ofεµ(k) involves
different bands of the 3D FB dispersion. As a result, the solution of Eq. 1 is compu-
tationally prohibitive when it is to be coupled to the Poisson and transport problems,
hence most of the paper concerned with transport have discussed Eq. 1 only around the
energy minima, and understandably moved to approximated solutions [5, 6].
Fig.1 illustrates the lowest eigenvalueε0(k) versusk obtained from Eq. 1 by including
the two lowest bands of the 3D FB structure. The 2D bandsεµ(k) are found to be
periodical in thek plane within the marked square. In fact we note that, assuming
a <100> orientation for the interface, the Wigner-Seitz cell in the real space of the
2D system is a square with a45 degrees orientation, and with a lateral dimension of
a0/

√
2. Consequently, the first Brillouin Zone (BZ) in the reciprocal space is also a

square, with a45 degrees orientation, and with a lateral dimension of2π
√

2/a0, which
finally explains the periodicity domain indicated in Fig.1.
It is worth pointing out that, in order to obtain the periodicity of Fig.1, it is necessary to
solve Eq. 1 forkz values ranging in more BZs of the 3D FB structure.
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Figure 1: Contour plot of the lowest eigenvalue versus the momentumk=(kx,ky) in the transport plane.
The square indicates the first Brillouin Zone of the 2D system. SOI MOSFET, silicon thicknessTSI = 9.4nm
and channel dopingNA = 1015cm−3. The inversion density isNINV ≈1013cm−2.

3 Effective Mass Approximation

A significant simplification of Eq. 1 is obtained by rewriting the equation around theυ-
th minimum of the 3D FB structure, thus leading to the Effective Mass Approximation
(EMA) [3, 5]. However, even in the EMA approach, the solution of the SEQ for each
k is computationally prohibitive for transport applications, so that an approximated
expression is necessary to describe the dependence of the eigenvalue onk (wherek and
kz are now to be referred to the minimum (k(υ)

m ,k(υ)
zm). To this purpose,E(υ)

FB around the
minimum has been universally simplified with Non-Parabolic (NP) expressions [5, 7].
However, this does not eliminate the need for solving the SEQ for eachk, because, in



order to achieve that, the key point is to decouple thek from thekz dependence in the
EFB . Following [7], we can account for the NP factoronly in the parallel energy:

ε(υ)
µ (k) ≈ ε

(υ)
µ0 + (2α)−1[−1 +

√
1 + 2αh̄2(k2

x/mx + k2
y/my)], (2)

where ε
(υ)
µ0 is the eigenvalue calculated fork=0 assuming a parabolic dependence

of EFB on kz. Following a similar reasoning, we propose an approximated solu-
tion for Eq. 1 around the minimum obtained by keeping only the lowest band of the
3D FB dispersion (n=0) and then by expanding theE(0)

FB with respect tokz to get

E
(0,υ)
FB (k, kz)≈(h̄2/2m

(υ)
z k2

z)+E
(0,υ)
FB (k, kz=0), i.e. assuming that theE(0,υ)

FB is parabolic

in kz with the same mass as in the minimum. The correspondingε
(υ)
µ (k), hereafter de-

noted as thekz2 model, is given by:

ε(υ)
µ (k) ≈ ε

(υ)
µ0 + E

(0,υ)
FB (k, 0) (3)

By definition, theε(υ)
µ0 is the same in both NP andkz2 models, as well as in the conven-

tional parabolic model. We have verified (not shown), that theε
(υ)
µ0 tracks very well the

FB results for both Bulk and SOI MOSFETs, because the parabolic expansion inkz for
theE

(0,υ)
FB is a good approximation for thek at the minimum.
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Figure 2: Energy dispersion within the firstun-
primed subband in the<010> direction. The Full
Band (FB) solution is compared to the approximated
kz2, non-parabolic (NP) and parabolic solutions. The
kz2 approximation is in close agreement with the FB
case. Bulk MOSFET,NA=3×1018cm−3 and inver-
sion densityNINV =1.4×1012cm−2.
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Figure 3:Same as Fig.2 for firstunprimedsubband
in the <110> direction. Thekz2 approximation is
in close agreement with the FB case, whereas the NP
and parabolic approximations are vastly wrong.Same
device as in Fig.2.

Figs.2 and 3 show the energy dispersion within the lowestunprimedsubband in the
<010> and<110> direction, respectively. Thekz2 model reproduces the FB results
very closely. The NP models, instead, are reasonably accurate for the<010> direction
(and the equivalent<100>), whereas they vastly overestimate the energy along the
<110> direction.
For theprimedminimum, we found that the results are similar to Fig.2 in the<100> di-
rection (not shown), whereas all the approximated methods deviate from the FB results
in the<010> direction (Fig.4). The reason is that (see Fig.5), if we consider different
(kx,ky) along the<110 > direction, the FB energy changes drastically its dependence
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Figure 4:Same as Fig.4 for first Primed subband in
the<010> direction. All the approximated solutions
differ appreciably from the FB solution. Same device
as in Fig.2.
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Figure 5:Bulk silicon FB energyEFB versuskz

for different k=(kx,ky) values along the<010> di-
rection around aprimedminimum. Note that (kx,ky)
are referred to the minimum, so thatkx=0 meanskx

is exactly at the minimum. Whenky moves from the
minimum theEFB is a strongly non-parabolic func-
tion of kz . Same device as in Fig.2.

on kz, and the parabolic dependence onkz assumed by all the approximated methods
becomes incorrect.
More results pointing out interesting differences between the FB and the approximated
solutions of the SEQ will be presented at the conference together with a comparison of
the calculation of the Density of States.

4 Conclusions

In conclusion, we have presented a methodology to solve the quantization problem in
the MOSFET according to the 3D Full Band (FB) structure, that can be used to bench-
mark simplified models. Furthermore, we have proposed an approach to efficiently and
accurately model the energy dispersion within the subbands, that can be used to develop
transport models for the 2D electron gas beyond the non-parabolic band approximation.
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