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Abstract 
 
The effects of random doping and random oxide thickness fluctuations in ultrasmall 
semiconductor devices are analyzed by using self-consistent Poisson-Schrödinger 
computations. A very fast technique based on linearization of the transport equations 
is presented for the computation of threshold voltage fluctuations. This technique is 
computationally much more efficient than the traditional Monte-Carlo approach and 
yields information on the sensitivity of threshold voltage fluctuations to the locations 
of doping and oxide thickness fluctuations. Hence, it can be used in the design of 
fluctuation resistant structures of semiconductor devices. Sample simulation results 
obtained by using our linearization technique are reported and compared with those 
obtained by using the Monte-Carlo technique. 

1 Introduction 

Intrinsic parameter variations in ultrasmall semi-conductor devices represent a major 
problem in the design of ULSI circuits. These variations affect the functionality and 
yield of many analog and mixed signal circuits that are based on pairs or multiples of 
nearly identical elements and whose performance depends on the matching properties 
of their components. In digital circuit applications, parameter variations of individual 
components have a negative impact on the noise margins and stability of circuits, and 
thus decrease the reliability of these circuits. The effects of intrinsic parameter 
variations are even more dramatic in the case of ultrasmall devices, which are 
becoming pervasive in modern electronics. Therefore, accurate analysis of parameter 
variations in semiconductor devices and methods for the reduction of these variations 
are strongly needed for further advances in high speed and low power 
nanoelectronics. 
The effects of random doping and random oxide thickness induced fluctuations have 
been extensively studied by using classical transport equations [1-3]. Whereas these 
approaches are appropriate for sufficiently large semiconductor devices, in which 
quantum induced effects are not important, they cannot be applied to ultrasmall or 
heavily doped devices. Quantum mechanical (gradient density) approximations have 
been used to analyze random doping and random geometric dimension fluctuations 
[4,5]. These approximations provide useful qualitative information, but they fail to 
produce reliable quantitative results. In the article, we address this problem by 



developing a new method for the analysis of fluctuations in semiconductor devices 
based on self-consistent Poisson-Schrödinger computations. 
There are two conceptually different approaches to the analysis of fluctuations in 
semiconductor devices. The first approach, known as the Monte-Carlo approach, is 
based on generating numerous realizations of the doping and oxide structures and 
solving the transport equations for each of such realizations [4]. Statistics of different 
parameters of interest are then accumulated and used to evaluate the average values 
and variances of those parameters. The Monte-Carlo approach is computationally 
very expensive because the same device-level simulations have to be performed many 
times and the final results are prone to statistical errors. The second approach to the 
analysis of fluctuations in semiconductor devices is based on linearization of the 
transport equations and direct computations of variances of fluctuating quantities 
[5,6]. This approach is computationally much more (orders of magnitude) efficient 
than the Monte-Carlo technique and is not subject to statistical errors. In addition, it 
provides information on the sensitivity of parameter variances to the locations random 
doping and random oxide thickness fluctuations, which makes it instrumental in the 
design of fluctuation resistant structures. In this paper, both approaches are used to 
calculate variances of threshold voltages in nanoscale MOSFET devices and the 
accuracy of these two approaches are compared. 

2 Technical discussion and simulation results 

The carrier concentration in n-type silicon inversion layers is described by the 
coupled Poisson and “effective mass” Schrödinger equations: 
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where ϕ  is the electrostatic potential, D  is the doping concentration, ,i nψ  are the 

“envelope” wave functions associated with the nth eigenvalue ,i nE  in subband i, *
im  

is the effective electron mass tensor, cE∆  is the conduction band off-set, while all 
other notations have their usual meaning. Any fluctuation of the doping concentration 
induces fluctuations in the values of electric potential, energy eigenvalues, and energy 
eigenfunctions. Since most device parameters are directly related to the solution of 
equations (1)-(2), the values of those parameters will fluctuate. In the first order 
approximation, the variance of any fluctuating parameter A (e.g. threshold voltage, 
current, cutoff frequency) can be written as: 
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where only random doping fluctuations have been considered for simplicity. The 
summation in (3) is taken over all discretization points of the semiconductor device, 
and iD  is the expected value of the doping concentration at location i, and iD

Aγ  are 
“superposition coefficients“ that shows how sensitive parameter A is to the locations 
of doping fluctuations. The superposition coefficients can be found by using the 
perturbation theory and the algorithm presented in [7].  



Consider the fluctuations of the threshold voltage for 1-D MOS capacitors. The 
superposition coefficients of the threshold voltage can be written as [7]: 
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where ˆ
DF  and 

GV
F  are the derivatives of the discretized transport equations with 

respect to the doping concentration and gate voltage. gt is the transpose of column 
vector g, which can be found by solving the linear system of equations ˆ ttJ g = a , 

where ˆ tJ  denotes the transpose of the Jacobian matrix  of the transport equations and 
a  is a vector that depends on the definition of VT adopted in simulations (e.g. 
“inversion charge“ definition, “current“ definition, etc.). More details about the 
numerical implementation and the efficiency of the algorithm can be found in [7,8]. 
In the following, we present a few simulation results obtained for 1-D nMOS 
capacitors and 2-D short channel nMOSFET devices. The acceptor dopant 
concentration of both devices decreases from D =5x1018 cm-3 at y=20 nm from the 
oxide/semiconductor interface, to D =5x1016 cm-3 at the interface. For y>20 nm, the 
doping concentration is constant and equal to its value at y=20 nm. In Table 1 we 
present the standard deviation of VT computed by using the Monte-Carlo and the 
linearization techniques for the 1-D MOS capacitor. One observes a very good 
agreement between the two techniques. In Figs. 1(a)-(b), we present the “sensitivity 
coefficients” of VT computed for the 2-D MOSFET. These coefficients are defined as 

( )2
i

T

D
V iVγ ∆  and are computed by using the classical drift-diffusion and self-consistent 

Poisson-Schrödinger models. Quantum effects result in a slight shift (approximately 
1.3 nm) of the maximum of the distribution of “sensitivity coefficients” away from 
the interface. In Figs. 2(a)-(b), we present the dependence of 

TV
σ  on the average 

doping concentration in the channel and on the oxide thickness. 
 

 Doping fluctuations      Oxide thickness fluctuations 

 
Number of 
simulations 

TV
LWσ ×  

(mV× µm) 
Classical  

TV
LWσ ×  

(mV× µm) 
 Poisson-Schrödinger

TV oxσ σ  
(mV/nm) 
Classical  

TV oxσ σ  
(mV/nm) 

Poisson-Schrödinger 

100 1.39 1.59 168 171 
200 1.43 1.64 166 168 
500 1.42 1.62 164 161 
1000 1.39 1.60 161 165 

Linearization 
technique 

1.41 1.75 159 166 

 

Table 1: Standard deviations of VT for the nMOS capacitor with oxide thickness of 5 
nm and retrograde doping profile. L and W denote the length and the width of the 
device, respectively, while oxσ  is the standard deviation of the oxide thickness. 



  
 (a)      (b) 

Figure 1: Sensitivity coefficients of threshold voltage for a MOSFET device: (a) 
classical computations and (b) quantum computations. The channel length extends 
from 30 nm to 55 nm in the “along channel” direction. The oxide thickness is 2 nm. 
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Figure 2: Standard deviation of VT for a MOSFET device with L =W= 25 nm, and oxt  
= 2 nm. The doping concentration indicated on the abscissa corresponds to the doping 
concentration at y=20 nm. Only random doping induced fluctuations are considered. 

 
One can see that the quantum mechanical effects result in the increase of the standard 
deviation of the threshold voltage by approximately 10-15%. This effect can be 
detrimental to the scaling of many analog and digital circuits, where the matching 
properties of the transistors are essential (e.g. differential amplifiers, A/D converters). 
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