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Abstract— In order to assess and optimize layout strategies
for minimizing substrate noise, it is necessary to have fast and
accurate techniques for computing contact coupling resistances
associated with the substrate. In this paper, we describe an
extraction method capable of full-chip analysis which combines
modest geometric approximations, a novel integral formulation,
and an FFT-accelerated preconditioned iterative method.

I. INTRODUCTION

In order to assess and optimize layout strategies for min-
imizing substrate noise, it is necessary to have fast and
accurate techniques for computing contact coupling resistances
associated with the substrate. To properly extract the sub-
strate coupling resistances, it is necessary to solve the three-
dimensional Poisson’s equation for fairly complicated geome-
tries of conductors on the surface of a multilayer substrate.
A number of methods have been developed to address this
problem, including fast integral equation methods with multi-
layer Green’s functions [2] and finite difference techniques [3],
but they are either not efficient enough to handle an entire
integrated circuit layout or difficult to implement.

In this paper, we describe an extraction method capa-
ble of full-chip analysis which combines modest geometric
approximations, a novel integral formulation, and an FFT-
accelerated preconditioned iterative method. In particular, we
model the effects of non-zero conductances in the substrate by
considering a multilayer, rectangular substrate slab where each
layer has a homogeneous conductivity. The device to substrate
contacts are located on a bulk substrate with a thin epitaxial
layer. The substrate configuration is shown in Figure 1. It
should be noted that the formulation is easily extensible to
more general multilayered problems and is straightforward to
implement.

We conclude this paper with numerical results from a C++
implementation of the algorithm. These results show favorable
convergence and performance for different excitations.

II. FORMULATION

A. Geometry

In order to keep the extraction problem tractable, we assume
a two-block rectangular substrate slab as shown in Figure 1
with different upper and lower conductivities and varying
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Fig. 1. Geometry of a two-layered substrate

top surface contact locations. Similar to the surface integral
formulation developed in [1], our problem is approached using
a system of surface integral equations that is coupled through
current conservation at the planar interfaces between layers.
The accuracy of the formulation rests on the assumption that
the contacts are far enough from the sides of the substrate that
the potential on the substrate’s side surfaces make negligible
contributions to the overall potentials in the substrate.

B. Surface Integral Formulation

Applying Green’s theorem [1] to this problem yields the
following approximate system of integral equations that relates
surface potentials to surface electric fields in the upper and
lower blocks:

φu(r) = −
∫

Stop∪Smid

G(r, r′)
∂φu(r′)

∂n
dr′

+
∫

Stop∪Smid

φu(r′)
∂G(r, r′)

∂n
dr′ (1)
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and

φl(r) =
∫

Smid∪Sbot

G(r, r′)
∂φu(r′)

∂n
dr′

−
∫

Smid∪Sbot

φu(r′)
∂G(r, r′)

∂n
dr′, (2)

with Green’s function G defined as:

G(r, r′) =
1

4π|r − r′|
. (3)

In equations(1) and (2), φu and φl are the electric potentials
in the upper and lower blocks of the substrate, respectively,
and ∂φu

∂n and ∂φl

∂n are the surface normal electric fields for the
upper and lower blocks, respectively. Stop, Smid and Sbot are
the three surface layers indicated in Figure 1. For clarification,
the orientation of the surface normals are shown in Figure 1.

Equations (1) and (2) are coupled through the continuity
relations at Smid, which interfaces the upper and lower blocks.
These continuity relations are:

φu(r) = φl(r) r ∈ Smid (4)

and

σH
∂φu(r)

∂n
= σL

∂φl(r)
∂n

, r ∈ Smid (5)

where σH and σL are the conductivities of the upper and lower
blocks, respectively.

By using the continuity relations, φl and ∂φl

∂n at Smid can
be eliminated from equation(2). The final system of equations
is then given by:

φu(r) =

−
∫

Stop

G(r, r′)
∂φu(r′)

∂n
dr′ −

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′

+
∫

Stop

∂G(r, r′)
∂n

φu(r′)dr′ +
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′ (6)

and

φl(r) =

α

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′ +

∫
Sbot

G(r, r′)
∂φl(r′)

∂n
dr′

−
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′ −
∫

Sbot

∂G(r, r′)
∂n

φl(r′)dr′. (7)

In equation (7), the conductivity ratio α is the ratio of σH

to σL. Dirichlet or Neumann boundary conditions, or a mix
of both, are specified for the top and bottom surfaces of the
substrate.

C. Equation Summary

Overall, the system contains four integral equations and two
boundary conditions. The two boundary conditons are:

a(r)φu(r)+b(r)
∂φu(r)

∂n
= f1(r), r ∈ Stop,

(8)

where for each position on the top surface, (r) = 1 and b(r) =
0 if r is on a metal contact; b(r) = 1 otherwise. The function
f(r) = 0 if r is not on a metal contact and is either one or zero
depending on the coupling resistance being computed, and

cφl(r) + d
∂φl(r)

∂n
= f2(r), r ∈ Sbot (9)

where c = 1, d = 0 for a grounded backside substrate and
c = 0, d = 1 for and insulated backside.

The four integral equations are:

φu(r) =

−
∫

Stop

G(r, r′)
∂φu(r′)

∂n
dr′ −

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′

+
∫

Stop

∂G(r, r′)
∂n

φu(r′)dr′ +
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′

r ∈ Stop, (10)

φu(r) =

−
∫

Stop

G(r, r′)
∂φu(r′)

∂n
dr′ −

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′

+
∫

Stop

∂G(r, r′)
∂n

φu(r′)dr′ +
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′

r ∈ Smid, (11)

φl(r) =

α

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′ +

∫
Sbot

G(r, r′)
∂φl(r′)

∂n
dr′

−
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′ −
∫

Sbot

∂G(r, r′)
∂n

φl(r′)dr′

r ∈ Smid, (12)

φl(r) =

α

∫
Smid

G(r, r′)
∂φu(r′)

∂n
dr′ +

∫
Sbot

G(r, r′)
∂φl(r′)

∂n
dr′

−
∫

Smid

∂G(r, r′)
∂n

φu(r′)dr′ −
∫

Sbot

∂G(r, r′)
∂n

φl(r′)dr′

r ∈ Sbot. (13)

In the above equations,
φtop = φu(r), r ∈ Stop , ∂φtop

∂n = ∂φu(r)
∂n , r ∈ Stop

φmid = φu(r), r ∈ Smid , ∂φmid

∂n = ∂φu(r)
∂n , r ∈ Smid

φbot = φl(r), r ∈ Sbot , ∂φbot

∂n = ∂φl(r)
∂n , r ∈ Sbot

III. MATRIX SOLUTION

The top, middle and bottom surface layers are each dis-
cretized with an nx x ny grid of regular, rectangular panels,
generating 3nxny total panels. Each panel provides the local
support for two piece-wise constant basis functions, one repre-
senting a constant φ(r) on the panel, and the other representing
a constant ∂φ(r)

∂n on the panel. We will solve for a discretized
solution of six unknowns, each unknown is approximated by
a weighted sum of these basis functions.

By inserting this discretized representation into Equations
(8)-(13) and subsequently testing the equations at the centroids
of each panel, a matrix equation is generated. This matrix is
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Fig. 2. System Matrix Structure

shown in block form in Figure 2. Note that each submatrix
block indicated in the figure is of size nxny x nxny . The
first two blocked rows of the matrix, which correspond to the
boundary conditions tested at the top and bottom surfaces,
each have two nonzero diagonal blocks. The third through
sixth blocked rows correspond to testing Equations (10)-(13),
respectively. The solution vector sought is a column vector, of
size 6nxny , which has a blocked row structure. Each blocked
row of size nxny corresponds to the weights in the expansion
of either φ or ∂φ

∂n for a single layer. Our ordering chosen for
these blocks is: φtop,φmid, φbot,

∂φtop

∂n ,∂φmid

∂n ,∂φbot

∂n

This matrix equation is solved using a Generalized Con-
jugate Residual(GCR) iterative method that requires only
one matrix-vector product at each iteration. Because of the
sparsity pattern of the matrix, a matrix-vector product can be
decomposed into submatrix-subvector products. Each of these
submatrix-subvector-products is a two-dimensional discrete
convolution. Due to the reguarity of the grid, this convolution
can be performed in O(nxnylog(nxny)) operations via FFTs.
A right-preconditioner is formed from the diagonals of the
submatrices and is used to accelerate the convergence of the
GCR algorithm.

IV. COMPUTATIONAL RESULTS

Two types of Dirichlet boundary conditions are imposed on
the top surface of the substrate to test the convergence rate of
the proposed solution. The bottom surface of the substrate is
grounded. The first type of boundary condition is to randomly
set each discretized panel on the top surface to a potential of
either 1V or 0V. The second type of boundary condition is
to set the voltages of strips of panels on the top surface to

a regular sequence of 1Vs and 0Vs. Tables 1 and 2 contain
the convergence and timing results obtained for each boundary
condition type at different levels of structural discretization.

Table 1: Convergence and Timing Results for the First Type of Boundary

Condition
System matrix Iteration Count Total CPU time (s)
3750 X 3750 20 2.716

(25 X 25 panels
layer )

33750 X 33750 31 68.61
(75 X 75 panels

layer )
93750 X 93750 88 253.46

(125 X 125 panels
layer )

183750 X 183750 45 634.43
(175 X 175 panels

layer )
453750 X 453750 56 1772.54

(275 X 275 panels
layer )

43750 X 843750 68 5242.21
(375 X 375 panels

layer )
73 8461.75

(475 X 475 panels
layer )

Table 1: Convergence and Timing Results for the Second Type of Boundary

Condition
System matrix Iteration Count Total CPU time

(s)
3750 X 3750 15 1.98

(25 X 25 panels
layer )

33750 X 33750 23 48.83
(75 X 75 panels

layer )
93750 X 93750 28 175.34

(125 X 125 panels
layer )

183750 X 183750 32 411.64
(175 X 175 panels

layer )
303750 X 303750 37 658.72

(225 X 225 panels
layer )

453750 X 453750 40 1097.71
(275 X 275 panels

layer )

V. CONCLUSIONS

Experimental results have demonstrated that the iterative
method converges in seventy-five iterations or less, even for
problems with more than a million unknowns. It can then be
concluded that the surface integral formulation with matrix
sparsification techniques has solved the substrate coupling

problem with accuracy and fast convergence rate. This ”fast”
method can be utilized to simulate large substrate coupling
problems with a great number of unknowns in an efficient

and accurate manner. We are currently implementing
extensions to the method to allow for trench isolation.
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