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Abstract—A quantum correction method based on the effective 
total potential used for the Monte Carlo simulation is presented. 
The Bohm-based and Wigner-based quantum correction models 
are unified under a single effective conduction-band edge (ECBE) 
method via a density-dependent quantum correction coefficient. 
The ECBE equation in thermal equilibrium as well as 
nonequilibrium is derived. This new equation is then applied to 
the MC simulation of quantum tunneling of a step potential 
barrier. 

I. INTRODUCTION  
The Boltzmann transport equation (BTE) using the 

ensemble Monte Carlo (MC) method has been successfully 
applied to semiconductor device simulations for many 
decades. However, quantum mechanical (QM) effects such as 
carrier confinement and barrier tunneling cannot be properly 
described by the semi-classical BTE. A few techniques have 
been developed in order to bring quantization and tunneling 
effects into classical simulations. The effective potential 
method [1] incorporates quantum effects associated with the 
finite-size of the electron into classical simulations. Another 
quantum MC method is based on the Wigner function 
formalism in which the dynamics of particles are treated 
classically with a nonlocal quantum force [2]. The density-
gradient (DG) method [3] includes the quantum effects arising 
from the density gradient and is equivalent to Madelung-
Bohm-Takabayasi’s [4,5,6] interpretation of the Schrödinger 
equation. All of these methods have advantages and 
disadvantages. In this work, the Wigner-based and the Bohm-
based quantum correction models are unified and a new 
method based on the effective conduction-band edge (ECBE) 
is presented. 

II. THE BOHM-BASED AND WIGNER-BASED QUANTUM 
CORRECTION MODELS 

For stationary states, the substitution of the wave function 
into the single-particle Schrödinger equation yields [5] 
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where )()( 2 rRrP
rr

=  and ( )hiSR exp⋅=ψ  is the wave 
function in complex form. For a pure state, the probability 
density )(rP r  is proportional to the carrier density )(rn r . 
Under this assumption, (1) becomes 
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Since the Bohm quantum potential Q
BV  depends on the density 

gradient, the quantum correction based on (2) is also known as 
the DG method. 

The Wigner-based quantum correction model can be 
derived from the Wigner transport equation (WTE) [7]. By 
retaining the lowest order term  in )( 2hO , the WTE becomes 
the QM corrected BTE, 
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where the Wigner quantum potential Q
wV  is often  

approximated by [8-11] 
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However, the correct expression for Q
WV  should be [7, 12, 13] 
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Note that there is a difference between (4) and (5). Missing a 
term proportional to ( )( )2rV v∇  in (5) significantly affects the 
Wigner-based quantum correction model. 

If we were to assume 
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Since Q
BV  and Q

WV  are similar at lowest order in ( )2hO  
except for a numerical factor of 2 or 3, we do not need to treat 
them separately. In unifying these two quantum potentials, we 
define the effective total potential (ETP) )(* rV v  

)()( rVrV Q v+=  [5-6]. Basically, the eigenenergy E in (2) 

plays the role of the effective total potential energy )(* rV v
, or 

in other words, the role of the ECBE, )(* rEc
v . In this 

hydrodynamic picture, the kinetic energy part of the 
Hamiltonian is transferred to the potential energy part )(rV v

 
and considered as a quantum potential or “self-potential” [6]. 
Thus, (2) and (6) can be combined and rewritten as  
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where with 1=r , V* represents the effective total Bohm 
potential, *

BV , and with r=3, it represents the effective total 

Wiger potential, *
WV . 

In recent years, (4) has recently been used extensively in 
the QM corrected Monte Carlo (MC) simulation of 
semiconductor devices, notably by Tsuchiya and his co-
workers [2, 11, 14-17]. In this approach, particles are not 
accelerated by the conventional electrostatic force 

)()( rVrF vv −∇=  but rather by the QM corrected force 

)()( ** rVrF vv −∇=  which includes the quantum effect 
through the density gradient. However, aside from the use of 
an incorrect Wigner potential, the MC calculated carrier 
density in this approach suffers from statistical fluctuations and 
it is difficult to obtain an accurate )(* rF v

, which involves a 
third spatial derivative of )(rn v

. 

III. THE EFFECTIVE CONDUCTION-BAND EDGE EQUATION 
To circumvent the difficulty associated with the density 

fluctuations, we propose the following: For the equilibrium 
Boltzmann distribution, after the quantum correction, )(ln rn v

 

is proportional to TkrV B)(* v−  and not to TkrV B)(v− . 

With this proper connection between )(rn v
 and )(* rV v

, (7) 
can be transformed into the following second-order differential 
equation for )(* rV v

: 
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which we will call the ETP field equation or the ECBE 
equation valid under the equilibrium condition. We believe 
such an equation has never been presented. 

In fact, the Bohm and Wigner-based models can be unified 
if r in (8) is replaced by a density dependent r(n) given by    

( )[ ] ( )( )[ ]ηηηπ ddFnFNnr C 2/1
2
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which is related to  ( ) ( )[ ]nrnh 2112 =  listed in Appendix B of 
Perrot [18]. Figure 1 shows how r varies with n. 

When the carrier transport is involved, i.e., under the non-
equilibrium condition, )(rn r  is no longer proportional to                   

[ ]TkrV B)(exp * v−  and (8) has to be modified. In addition to 
satisfying (7), both n and V* must be self-consistent with a set 
of quantum hydrodynamic (QHD) equations. The lowest-order 
moment of the QHD equations in which F* appears is the 
momentum conservation equation, 
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where kP h
v

=  is the crystal momentum, kvU
v

h
v=ˆ  is the 

energy stress tensor, ( ) ** VVVF Q −∇=+−∇=
v

 is the QM 
corrected force, and ( )collp tfkC ∂∂=

v
h

v
 is the average rate 

of change of momentum due to collisions [19]. Equation (10) 
is similar to Takabayasi’s QHD model for the Schrödinger 

field [6], except that the QM stress ( ) ( )
kl

kl xx
Rm

∂∂
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22
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is transferred to the potential V to become an effective total 
potential V*. For a steady-state problem and assuming IUU ˆˆ =  
for simplicity, (10) reduces to 

( ) pCUUVUn
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The elimination of ( )nln∇  from (7) and (11) yields 
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Figure 1: r(n) vs electron density. 
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2
2 h=λ . This is our 3-D ECBE equation valid 

under the biased conditions. If we assume 
.constTkU B =≈ , then (12) in 1-D becomes 
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This equation is the same as Ancona’s D-G drift-diffusion 
model if Cp is expressed in terms of a mobility [20]. Equation 
(12) for V* (or *

CE ) must be solved at each field adjustment 
time the same way Poisson’s equation is solved for V. Similar 
to inputting )(rn v

 from the MC simulation when solving 
Poisson’s equation, data for U and Cp must be input from the 
MC simulation when solving the field equation for V*. 
However, unlike the DG method in which the density gradient 
is directly evaluated from the MC simulation, the solution for 
V* is always smooth and stable because (12) is integrated 
twice. 

IV. SIMULATION PROCEDURES 
As a demonstration for the application of the ECBE 

equation, we consider 1-D tunneling of a GaAs/AlGaAs/GaAs 
barrier with a barrier height of 0.22 eV and a barrier width of 
2.5 nm. For the unbiased case, we use (8) for the calculation of 
V*(x). We choose r=1 and r=3 to compare the Bohm-based 
and Wigner-based quantum corrections. The electrostatic 
potential barrier V(x) is updated self-consistently by solving 
Poisson’s equation at each 0.2fs. At the same time, (8) is 
solved for V*(x). A newly calculated QM force 

dxxdVFx )(** −=  is then used to advance particles. For the 
biased case, we solve (12) in 1-D. Two approximations are 
used here for the purpose of comparison. In lieu of (12), one 
approximation uses (8) while the other uses (8) but with kBT  
replaced by U which must be input from the MC simulation. 

V. SIMULATION RESULTS AND DISCUSSION 
Fig. 2 shows electron distributions in space and energy of 

the GaAs/AlGaAs/GaAs single barrier at zero bias using the 
flat band voltage. As can be seen, both quantum correction 
models show quantum repulsion by the potential barrier but the 
barrier height resulted from the Bohm model (r=1) is 
substantially lower than that from the Wigner model (r=3). 
Fig. 3 compares self-consistent solutions of electron 
distribution obtained by the Bohm-based MC solution and the 
calculated ( )TkrVn B)(exp * v−∝  using (8) at zero-bias. The 
two curves follow each other very closely, which indicates that 
the relationship TkrVrn B)()(ln * vv −∝  is indeed correct. 

 
Figure 4 shows the ETP obtained under the unbiased condition 
using (8). The model with r=1 produces a slightly narrower 
barrier width and a substantially lower barrier height than that 
obtained from the model with r=3 as seen in Fig. 2. Also 
included in Fig. 4 is the ETP obtained by using a self-
consistent quantum correction coefficient r(n) and the result 
obtained is very close to that obtained by the model using r=1 
in (8). Figure 5 shows the ETP at the bias voltage of 0.05V. 

 
(a) 

 
(b) 

Figure 2: A snapshot of the electron distribution in space and 
energy at zero-biased condition. (a) Bohm model. (b) Wigner 
model using (8)   

 

Figure 3:  Electron density vs position. 
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 The barrier height obtained by the equilibrium ECBE model 
using (8) (the first approximation) is lower than that obtained 
by the nonequilibrium ECBE model using (12). Equation (8) 
with kBT replaced by U (the second approximation) produces 
an ECBE barrier height similar to that produced by (12). The 
barrier height obtained by using (8), (12), and (8) with kBT 
replaced by U are 0.0200, 0.0291 and 0.0311eV, respectively. 
The corresponding current densities are 31073.7 −× , 

31048.5 −× and 231003.5 mA µ−× ,  respectively. It is 
interesting to note that the ratios of current density 

41.148.573.7 =  and 09.103.548.5 =  corresponds exactly to 
the ratios ( )[ ] 42.10259.00200.00291.0exp =−  and 

( )[ ]0291.00311.0exp 08.1= , as should be expected. Note also 

that the peak of the effective barrier *
maxV  shifts to the right 

from the center of the barrier to the edge of the conduction-
band discontinuity when (12) is used instead of (8). This is in 

agreement with the earlier work of Frensley [21] using the 
discrete Wigner distribution function model. 

VI. CONCLUSIONS 
We have proposed a new field equation from which the 

ETP, V* (or the ECBE, *
CE ) can be solved. This potential is 

then used to calculate the quantum force employed in the 
classical MC solution of the BTE. The main advantage of 
calculating V* is to avoid the density fluctuations arising from 
the MC simulation. Both Bohm and Wigner quantum 
potentials are unified under a single ECBE model. The ECBE 
model with r=r(n) produces reasonable results to the barrier 
tunneling under the biased conditions. Application of this 
ECBE method to the full and quasi-2-D simulation of practical 
devices such as FinFETs and DGMOSFETs will be published 
soon. 
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Figure 5: V* obtained by different ECBE models at a bias of 
0.05V. 

 

  
Figure 4:  Comparison of V* obtained by different ECBE 
models at zero bias. 
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