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Abstract Design of a three-terminal Quantum Switch
is suggested in form of a network consisting of a circu-
lar quantum well and a four quantum wires attached
to it. The conditions of functioning are defined in de-
pendence of the desired working temperature, Fermi
level and effective mass of an electron. The speed of
switching is estimated.

1 Introduction

The interference of wave functions is intensely used for
manipulation of quantum current since eighties, see for
instance [2, 3, 4]. The Resonance Quantum Switch in
[5, 9, 6, 11] was suggested as a quantum network Ω (“fat-
tening graph”, see [7, 8]) constructed on the surface of a
semiconductor of a circular quantum well Ω0 (vertex do-
main)radius R and quantum wires Ω1, Ω2, Ω3, Ω4 width
δ attached to it centering at the points as, s = 1, 2, 3, 4
on the boundary of the well ∂Ω0. The wire Ω1 is selected
for the input, others are terminals. The quantum wires
are connected to the well directly or via tunnelling under
potential barriers situated on the contact zone (−l, 0) of
the wires (−l,∞) (split-gates). The width l of the bar-
rier may vary from zero to few nano-meters. The height
of the barrier over the Fermi-level and the depth of the
channel may vary from zero to few eV , see [10].The ef-
fective potential V∞ + �

2π2

2m⊥δ2 in the wires at infinity is
choosen such that the resonance energy level E0 = Ef is
in the middle of the first spectral band.
We neglect scattering on impurities both in the quan-

tum well and on the wires assuming that the dynam-
ics of electrons is ballistic and single-mode on large in-
tervals of the wires.The quantum dynamics of a single
electron is described by the Schrödinger equation with
the linear potential V (x) and the average effective mass
m inside the well. The potential on the wires is piece-
wise constant or constant,but the tensor of effective mass
is non-trivial : the effective mass across the wire m

⊥

and along the wire m
‖
are different 1. When assum-

1On the lower valleys on (100) plane in Si m
⊥

= 0.190, m
‖

=
0.916

ing that the radius of the vertex domain is small for
given temperature , we have in mind that the spacing
ρ

R

0 (Ef ) = mins�=0 |Es −E0| of energy levels in the vertex
domain Ω0 radius R at the resonance energy E0 = Ef

(with wires disjoint from the domain) is large compared
with temperature:

κT <
1
2
inf

Es �=Ef
|Ef − Es| = ρ(Ef ). (1)

We assume that the inverse “re-normalized” spacing is
estimated by the distance of the Fermi-level from the
second threshold :

1
ρ1 :=

�
2

2m0R2ρR(Ef )
<

R

δ
π

√
3
2

m‖

m⊥ . (2)

The non-dimensional spacing on the resonance level for
the circular quantum well radius 1 is 2.3 so that the
above condition (2) is fulfilled if the width δ of the wires
and the radius R of the well are connected by the con-
dition δ R−1 < 8.5

√
m‖ (m⊥)−1, for instance if δ ≤ R

2 .

2 Scattering and resonances

We consider a single act of an electron transmission from
the incoming wire Ω1 to one of terminals Ωs, s = 1, . . . as
a scattering process in the network Ω. The Schrödinger
equation on the wires admits separation of variables u =∑∞

l=1 ul(x)el(y) when using the expansion over eigen-

functions of the cross-sections el(y) =
√

2
δ sin

πly
δ , 0 <

y < δ, . Denoting by V1(x) the potential on the wire

V1(x) =
{

Vbarrier if (−l < x < 0)
V∞ if (0 < x < ∞),

we may present the equations for the amplitudes ul, l =
1, 2, . . . as

−d2ul

dx2 +
2m‖

�2 [V1(x) − V∞]ul =

[
m‖

m0
λ − m‖

m⊥

(
π2l2

δ2 − π2

δ2

)]
ul, l = 1, 2, . . . . (3)

0-7803-7826-1/03/$17.00 © 2003 IEEE- 275 -



with the positive spectral parameter λ = p2 =
2m0
�2

[
E − V∞ − �

2

2m⊥
π2

δ2

]
. Assuming that the effective

mass of electron inside the well coincides with conven-
tional electron mass m = m0 we present the spectral
problem on the whole network by combination of the
equation (3) and

− � u0 +
2m0

�2

[
Ee〈x, ν〉 + V0 − V∞ − �

2

2m⊥
π2

δ2

]
u0 =

2m0

�2

[
E − V∞ − �

2

2m⊥
π2

δ2

]
u0 = λu0, (4)

with the matching boundary conditions:

[u − u0]
∣∣∣∣
Γs

= 0,
[
1
m‖

∂u

∂n
− 1

m0

∂u0

∂n

] ∣∣∣∣
Γs

= 0. (5)

The intermediate perturbed operator lr is defined by the
above Schrödinger equations on the whole network with
partial Dirichlet boundary condition chopping the first
channel off:

P+u = 0, (6)

and partial matching conditions in all closed channels.
Removing the trivial component of the intermediate op-
erator in the first channel we consider the orthogonal
component lr. The continuous spectrum of lr begins
from the second threshold �

2

2m⊥
4π2

δ2 . The eigenvalues
Er

s = �
2

2m0
λr

s of it below the second threshold play a
role of resonances .
The 4-dim branch of scattered waves of the origi-

nal spectral problem corresponds to the components
combined of Jost solutions of the equation (3) in
the first channel with compactly-supported poten-
tial [V1(x) − V∞] = 0, x > 0 and [V1(x)− V∞] =
H �

2

2m0
, −l < x < 0:

−d2u1

dx2 +
2m‖

�2

(
V1(x) − V∞ − �

2

2m⊥
π2

δ2

)
u1 =

m‖

m0
p2u1,

u1(x) = e
−i

√
m‖
m0

px
ν + e

i

√
m‖
m0

px
S1ν, x > 0, ν ∈ E+,

(7)
and is accomplished with exponentially decreasing com-
ponents in upper channels l ≥ 2:

ul(x) = Sl ν e
−

√(
π2l2

δ2 − π2

δ2

)
−p2 x

, x > 0, l > 1.

The Scattering Matrix S1 and the amplitudes Sl in upper
channels are defined from the matching condition of u1 to
the solutions of the corresponding homogeneous equation
inside the well. The two-dimensional matching problem
may be solved with use of the Dirichlet-to-Neumann map
(DN-map) Λr of the operator lr, see Appendix below and

[17, 20]. Then , introducing the notation

m0

m‖

−i
√

m‖

m0
p −

√
H2 − m‖

m0
p2 tanh

√
H2 − m‖

m0
p2l

i
√

m‖

m0
p

tanh
√

H2− m‖
m0

p2l
√

H2− m‖
m0

p2
+ 1

= D

we obtain :

S1(p) = −P+ΛrP+ − P+ D
P+ΛrP+ − P+ D̄

×

i
√

m‖

m0
p tanh

√
H2 − m‖

m0
p2 l +

√
H2 − m‖

m0
p2

−i
√

m‖

m0
p tanh

√
H2 − m‖

m0
p2 l +

√
H2 − m‖

m0
p2

(8)

We estimate the speed of transition processes by the
width of the corresponding resonance, see [19] λs = p2

s

for the quantum well radius 250A in two cases:
1. In case when equivalent split-gates are constructed on
the initial part of each wire −l < x < 1, we assume that
the barrier is 1eV over the Fermi level Ef which is 1 eV

over the effective bottom V∞ + �
2

2m⊥ in the wire. The
width δ of the wire and the width l of the barrier both are
2 nm [10] Neglecting the contribution to DN-map from
the neighboring (non-resonance) eigenvalues compared
with the momentum we obtain an approximate position
of the solution λ̂r of the previous equation near to the
resonance eigenvalue λ̂r

0:

λ̂ ≈ λ̂r
0 − 0.11 + 0.14i ε

with ε = 3.45 10−8. Then the life-time is calculated as

τ0 = 4.08m0 (�)−1 R2 108 = 7.6 10−3sec.

2. In case when the split-gates at the entrances to the
wires are absent, l = 0, we also assume that the contri-
bution to DN-map from the neighboring non-resonance
eigenvalues is dominated by momentum. Then the non-
dimensional resonance may be calculated as

λ̂ = λ̂r
0 − 5.5 10−3 + i 0.11

and the life-time of the resonance is found as τ0 = 10πs.
In both cases we neglected the contribution to DN-

map from the non-resonance eigenvalues, using actually
the one-pole approximation for expressions staying in the
numerator and denominator of the Scattering matrix.
In particular, in the second case we have the following
“one-pole approximation ” for the Scattering matrix on
the first spectral band

S(λ) ≈ −
P+

∂ϕr
0

∂n 〉〈P+
∂ϕr

0
∂n

λ−λ0
+ i

√
m‖

m0
pI

P+
∂ϕr

0
∂n 〉〈P+

∂ϕr
0

∂n

λ−λ0
− i

√
m‖

m0
pI

, λ = p2 (9)

which actually is a Scattering matrix for the correspond-
ing “zero-range potential with inner structure” similar to
one discussed in [13].
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3 Switching phenomenon and
working point

We see from (9) the transmission of the electron’s waves
across the vertex domain is implemented via excitation
of the resonance mode inside the vertex domain Ω0.
The transmission coefficients are defined by the portions
φr

0 =
∂ϕr

0
∂n of the resonance eigenfunction on the bottom

sections Γs of the wires.
We use the non-dimensional Schrödinger equation ob-

tained from the original equation by scaling x = Rξ in
the geometrical form (4) of the Schrödinger equation for
the values of energy on the first spectral band :

− �ξ u+
2m0eER3

�2 〈&ξ, &ν〉u +

2m0R
2

�2

[
V0 − V∞ − �

2

2m⊥

(π

δ

)2
]
u = p̂2 = λ̂u. (10)

Choosing ε = 2m0 |e|ER3

�2 = 18.86 one may see that
the eigenfunction corresponding to the second lowest
eigenvalue λ̂0 = 14.62 of the even series of eigenfunc-
tions of the Dirichlet problem the zeroes of the normal
derivative on the boundary divide the boundary in ra-
tio 1 : 2. The portion φr

0 = P+
∂ϕr

0
∂n of the eigenfunc-

tion of the intermediate operator coincides, up to small
error, with the corresponding portion of the eigenfunc-
tion of the Dirichlet problem. The relative shift of the
corresponding non-dimensional eigenvalues is estimated
( by Doctor V. Oleinik, with variational method) as
∆̂0 = λ̂r

0 − λ̂0 = 14.55 − 14.62 = −0.07.In this section
we do not distinguish these eigenvalues.The resonance
portion was computed (by Mr. Kieran Robert ) for the
potential defined by the vector ν directed to the point
a1 as :

φ̂0+ = (1, 0.1, 3, 0.1), (11)

hence α̂2 = |φ̂0|2 ≈ 10. Then the transmission coeffi-
cients may be calculated from (9) as : |T12| = |T14| =
0.02, |T13| = 0.6 so that the ratio of the amplitudes of
the signal in closed Ω2,4 and open Ω1,4 wires is ≈ 1 : 30
and the conductance from the input wire to the open
channel Ω3 may be obtained from the Landauer for-
mula, σ13 ≈ e2 h

−1
0.36,see [1], for spin-polarized elec-

trons. For non-polarized electrons the result should be
doubled. Due to the symmetry of the domain the res-
onance eigenfunction is rotated together with vector ν,
blocking different pairs of entrances.
The working regime of the switch is stable if the bound

states in the well corresponding to the neighboring eigen-
values are not excited at the temperature T as:

R2 ≤ 2.3
2κT

�
2

2m
, δ <

R

2
(12)

Then the shift potential V0 on the well Ω0 may be defined
from the condition 2mR2[Ef − V0 + V∞ + �

2

2m⊥
π2

δ2 ] =

�
2 λ̂0, and the electric field E may be found from the
condition ε�2 = 18.86�2 = eE 2mR3, where e is the
absolute value of the electron charge. The magnitude
of the governing electric field for the quantum well ra-
dius R = 1000A is 38 10−6 v/mkm which is not yet
greater than admissible level 10−2v/mkm of an acceler-
ating electric field in Si. For the quantum well radius
R = 100A the governing electric field is already 38 102

v/mkm > 10−2 v/mkm.
Calculation of the radius of the quantum well (in

Angstroms) based on the previous estimation (12) of
the radius for different materials gives the following
results,[16, 14, 15]:

Material R300K R77K R4.2K

Cd0.15Hg0.85Te 160 310 1350
InSb 110 230 930
InAs 90 170 760
GaAs 50 100 420
Si 10 25 85

For Si the local values of the mass may essentially
deviate from the average value 0.8, depending on local
positions of valleys. For quantum wells with R > 100A
one may describe the electron’s dynamics on the well by
the Schrödinger operator with the average mass, since
the period of the Si lattice is 5.43A.

4 Appendix

For the Schrödinger equation in geometric form the DN-
map is a map of the boundary values uΓ of the solution

− � u+ V u = λu, u|
∂Ω0

= uΓ

on the border ∂Ω0 = Γ of the domain into the boundary
values of it’s normal derivative:

Λ : uΓ → ∂u

∂n
|
∂Ω0

.

For the boundary condition u
∣∣
Γ = uΓ we obtain the so-

lution of Lu = λu as a re-normalized double-layer po-
tential : u(x) =

∫
Γ Pλ(x, s, λ)uΓ(s)dΓ. The DN-map is

represented for regular points λ of LD as a generalized
integral operator with a singular kernel:

[Λ(λ)uΓ ] (xΓ) =
∂

∂n
|x=xΓ

∫

∂Ω
Pλ(x, s, λ)uΓdΓ. (13)

The DN-map for the intermediate operator is defined
for given boundary data uγ ∈ E+ as a projection
Λr = P+

∂u
∂n , of the normal derivative of the solution

u : lu − λ̂u = 0 on the whole network which is properly
decreasing at infinity in all upper channels

Theorem 4.1 The Scattering Matrix on the whole net-
work Ω may be presented in terms of the DN map Λ of
the vertex domain Ω0 as

S1(λ) = −Λr − K̄+

Λr − K+ . (14)
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A special combination of matrix elements of the matrix
representation of Λ with respect to the orthogonal decom-
position I = P+ ⊕ P−:

Λr = Λ++ − Λ+−

[
K

−

+ Λ−−

]−1

Λ−+ (15)

coincides with the DN-map of the intermediate operator
lr with the “chop-off” boundary condition.

The eigenfunctions of the operator lr may be found by
variational method.
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