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Abstract— A numerical method for the resolution of the two
dimensional Schrödinger equation with an incoming plane wave
boundary condition is proposed and applied to the simulation of
ultrashort channel double gate Mosefets. The method relies on the
decomposition of the wave function on subband eigenfunctions.
The 2-D Schrödinger equation is then equivalent to a nondiagonal
onedimensional matrix Schrödinger system. The size of the
matrix being the number of considered subbands. This leads to
a drastic reduction of numerical cost. The method is illustrated
by simulating a squeezed channed DGMOS.

I. INTRODUCTION

As device dimensions shrink down to the quantum limit -
both in the confinement direction (body or oxide thickness)
and in the channel direction - it becomes more obvious that
device operation will be governed by non equilibrium quantum
transport phenomena (in a 2D or even 3D geometry). Source
to drain tunnelling is an illustration of a full 2D quantum
effect, and has been shown to become one mechanism of
the degradation of device performance at ultra-short channel
length (below 10nm). Simultaneously, even for the low drain
voltages which are expected for such short devices, the carriers
which contribute to current flow in the channel are strongly out
of equilibrium, even though isotropic interactions in silicon are
much more frequent than in III-V compound semiconductors.
The ability of controlling drain current with a gate and of
preventing drain parasitic control, will directly result from
carrier out of equilibrium transport between coupled regions
of the device, separated by 2D potential barriers. Therefore a
self-consistent resolution of the fully two dimensional out of
equilibrium Schrödinger-Poisson system is of primary impor-
tance. This subject has been widely studied in the literature and
our purpose here is to propose a numerical procedure, based
on the concept of subbands (see [2] for the detailed description
of the method), which drastically reduces the simulation time
in the case of the double-gate Mosfets.

II. THE METHOD

The geometry that we consider is bidimensional. The test
case that we shall handle is the squeezed double gate MOSFET
which is shown in Figure 1. In the ballistic regime the electron

density is computed by n(x, z) = 2
(
nt,l,t(x, z)+nl,t,t(x, z)+

nt,t,l(x, z)
)

where we denoted by z the transversal variable
and x the parallel one and we accounted for the 6-fold
degeneracy of the conduction band in silicon. The ellipsoidal
symmetry of each valley was described by means of a mass
tensor within the parabolic approximation. The contribution of
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Fig. 1. Schematic view of the squeezd double gate mosfet

each valley is obtained as the density of a mixed state whose
elementary states are indexed by three indices : the index p0
of the injection port (source or drain), the index i0 of the
subband on which the electron is injected and the value kx

of the longitudinal injection wave vector. The statistics of the
mixture is given by Fermi-Dirac functions with the source and
drain Fermi levels [1].

To fix the ideas, the density nt,l,t is given by

nt,l,t(x, z) = 2
∑

p0

∞∑

i0

∫ +∞

0
|ψp0,i0,kx

(x, z)|2

(∫ +∞

−∞
fFD

(
E(p0, i0, kx, ky) − µp0

)
dky

2π

)
dkx

2π

where µp0 is the fermi level of the port p0, the energy
E(p0, i0, kx, ky) is the total thre dimensional energy of the
electron in the valley (t, l, t) and fFD is the Fermi-Dirac
distribution at the lattice temperature. The elementary wave
function ψp0,i0,kx

(x, z) is a solution of the bidimensional
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Schrödinger equation
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zψ + U(x, z)ψ = εψ

and the two dimensional energy ε is given by

ε = E(p0, i0, kx, ky) −
�

2k2
y

2ml
= Ei0(xp0) +

�
2k2

x

2mt

and xp0 is the location of the injection port p0 whereas Ei0

is the energy of the subband number i0 defined by

− �
2

2mt
∂2

zχi(z;x) + U(x, z)χi(z;x) = Ei(x)χi(z;x),

and U is the electrostatic potential energy. The wave function
staisfies the quantum transmiiting boundary conditions at
the source and drain boundaries [3] while top and bottom
boundaries are endowed with homogeneous Dirichlet bound-
ary conditions.

The self-consistent simulation of the problem requires 10
iterations of the Poisson equation for the electrostatic potential.
Each iteration contain the resolution of 2000 Schrödinger
equation which makes the cost rather big. In order to dras-
tically reduce the numerical cost, we notice that the subband
functions χp constitute a complete basis for any given x. The
wave function can then be written

ψ(x, z) =
∑

i

φi(x)χi(z;x).

The φi’ solve the nondiagonal Schrödinger system

− d2

dx2ϕ
i
ε(x) − 2

∞∑

j=1

c1ij(x)
d

dx
ϕj

ε(x)

−
∑∞

j=1

(
c2ij(x)

(
ε − Ej(x)

))
ϕj

ε(x) = 0

where the coefficients c1ij and c2ij are given by

c2ij(x) =
∫ Lz

0 χi(z;x) ∂2

∂x2χj(z;x) dz,

c1ij(x) =
∫ Lz

0 χi(z;x) ∂
∂xχj(z;x) dz.

The bounadry conditions for this system are the one-
dimensional quantum transmitting boundary conditions recov-
ered from the two dimensional ones. After havin computed
the subband energies and basis functions and then solve for
φi by a finite element method. The gain in the computational
time comes from the replacement of the resolution of a
two-dimensional equation by a system of one-dimensional
equations, the computation of the subband energies being done
once per Poisson iteration.

III. THE ALGORITHM

The numerical Schrödinger-Poisson algorithm is summa-
rized by the five following steps:

1) For a given potential energy U(x, z) on the [xs, xd] ×
[0, Lz] region, we solve the Schrödinger equations in the
confined direction z for all the nodes of the transport
direction with coordinate xn, n = 1 . . . Nx. Therefore,
we obtain Nx orthonomal sets of eigenfunctions {χi(z)}

y
x

z

{χ  (    )} i  x2

{χ  (    )} i  x1 {χ  (        )}  i  xNx

 i  xNx−1{χ  (             )}  

Fig. 2. The subband functions are computed for each vertical slice of the
domain

and eigenvalues {Ei} (see figure (2). The coefficients
c2ij , c1ij are then evaluated numerically.

2) For a given energy ε, the wave vectors ks
i and kd

i as-
sociated to the incoming scattering states in the domain
on the x transport direction are calculated and the one
dimensional matrix Schrödinger system is discretized
using a finite element or finite difference method. The so
obtained linear system is then solved either by matrix by
direct methods or by iterative ones as the QMR (Quasi-
Minimal Residual) procedure presented in [4].

3) The electron and the current densities are calculated by
suuming up the contribution of the elementary wave
functions (indexed by their energy, injection port an in-
jection mode, or equivalently the injection wave vector).
Numerically, the upper limit on the integration over the
energy variable is fixed at µp + 4kBT for the port p,
where µp is the corresponding Fermi energy.

4) The Poisson’s equation is solved in the x, z domain
using Dirichlet boundary conditions for the interfaces
with the gates, and Neumann boundary conditions on the
Source and Drain interfaces. The obtained real symmet-
ric sparse system can be solved using the preconditioned
conjugate gradient method.

5) Repeat three times all the four previous steps respec-
tively for the different effective mass configurations.
Take note that it is required only to compute two times
the eigenproblem in the first step respectively for m∗

l

and m∗
t on z. We so obtain two sets of eigenfunctions

and eigenvalues on z along the x transport direction.
We point out some remarks related to the numerical imple-

mentation of this algorithm:
• Because of the highly non linear character of the coupled

Schrödinger-Poisson system, implicit schemes have to be
used for its numerical resolution. The Newton-Raphson
method is not appropriate since the density depends non
locally on the potential. Therefore, for a given potential
V n at the step n, we propose to implicit the scheme as
follows:
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−∇
(
εr(z)∇V n+1

)
=

q

ε0

(
nD(z) − n(x, z)

T [V n+1]
T [V n]

)
,

where T defines a functional of V (take note that ε0 is the
vacuum permitivity, εr is the relative dielectric constant,
q denotes the free electron charge and nD is the positive
doping profile). Because of the exponential behavior of
the electron density in function of the potential V , one
suitable choice for T is then given by T [V ] = exp(qβV )
(with β = 1/kBT ). The linearization of this coupled
system leads to the Gummel iterative scheme [5] where
for a given potential V n at the step n, the new potential
V n+1 is now given by

−∇
(
εr(z)∇V n+1

)
+

q

ε0
n(x, z)

V n+1

Vref

=
q

ε0

(
nD(z) − n(x, z)

(
1 − V n

Vref

))
,

with Vref = kBT/q.
• In order to obtain a suitable initial guess to begin the

simulations at equilibrium, one way is to use the well
known Thomas-Fermi/Poisson semi-classical approxima-
tion, then

n(x, z) = 2
∫ ∫ ∫ +∞

−∞
fFD(E − µ)

dkxdkydkz

8π3 ,

where the wave functions are plane waves in the whole
domain and the energy depends on the local potential

E = U(x, z) +
�

2

2

(
k2

x

m∗
x

+
k2

y

m∗
y

+
k2

z

m∗
z

)
,

where we have again to sum over the thre different
mass configurations. In the present case the coupled
system will be solved using a Newton-Raphson method.
However, a better choice for the initial guess consists in
taking into account of the confinement of the electron gas
in the z direction using the χi(z;x) functions [6]. The
electron density of this hybrid model is written as

n(x, z) =

2
∞∑

i

∫ +∞

−∞
|χi(z;x)|2

(∫ +∞

−∞
fFD(E − µ)

dky

2π

)
dkx

2π
,

with

E = Ei(x, z) +
�

2

2

(
k2

x

m∗
x

+
k2

z

m∗
z

)
.

• If the thickness of the Silicon layer is large enough
(∼ 10nm or more) then the first two modes χ1(z;x) and
χ2(z;x) are separate and their energies are very close
to each other. In this case, all the numerical procedures
that we could use to solve each independent eigenvalue
problems on z along the x transport direction (see figure
(2)), appear not suitable in order to keep the regularity of

the function χ1 and χ2 on x. Our method then produces
the first two eigenvalues in a randomized order and
the eigenfunctions have a randomized sign as shown in
Figure (3), the final result on [xs, xd] × [0, Lz] is wrong.

Fig. 3. Variations of the first two eigenfunctions χ1(z; x) (on the left) and
χ2(z; x) (on the right) along the x transport direction. In this case (we take
10nm both for the thickness and the length of the channel), we note that the
eigenfunctions show a non regular behavior in the middle of the device.

To cope with this problem, we treat the two first eigen-
values as a single degenrate eigenvalue and rotate the
eigenfunction by a suitable amount which lets them
depend smoothly on x. For further details we refer to
[1]. Figure (4) is given to illustrate the variations of the
first two eigenfunctions after we have applied the suitable
rotation.

IV. COMMENTS

Let us mention that contrary to the reference [7] where the
off-diagonal terms accounting for subband coupling are not
taken into account, fully bidimensional effects are fully taken
into account since the coupled subband system is equivalent
to the dimensional Schrödinger equation. In particular our
method handles the squeezed DGMOSFET. In the figures
below, we show how the wave function is partly transferred
from the first subband in the source port to the second subband
in the drain port and how the coupling terms modify the
source-to-drain I-V curve.

As a conclusion, the method that we have presented
is equivalent to the resolution of the fully bidimensional
Schrödinger equation while having a much lower numerical
cost (by a factor 10). It allows to compute I-V characteristics
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Fig. 4. Variations of the first two eigenfunctions χ1(z; x) (on the left) and
χ2(z; x) (on the right) along the x transport direction numerically obtained
using the assumption of degenerate states. We note now a regular behavior
for the eigenfunctions in the device.
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Fig. 5. Reflection and transmission coefficients from the first subband
into the first subband (on the left) and on higher subbands (on the
right) as function of the energy. The results are obtained for an
incoming wave on the first subband.
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Fig. 6. I-V characteristics for the device with squeezed channel where
different modes coupling configurations are presented.

of the double Gate Mosfets in a reasonable computation time
and is promising for three-dimensional simulations.
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