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Abstract- Compact physics/process-based model for
threshold voltage in double-gate devices is presented. Drain-
induced barrier lowering and short-channel-induced barrier
lowering models for double-gate and bulk-Si devices are
derived. The validity and predictability of the models are
demonstrated and confirmed by numerical device simulation
results for extremely scaled (L¢s = 25 nm) double-gate and

bulk-Si devices.

I. INTRODUCTION

Due to the excellent control of short-channel effects
(SCEs), double-gate (DG) MOSFETs [1] can be scaled beyond
bulk-Si (or PD/SOI) CMOS with improved device/circuit
performance as the end of ITRS roadmap [2] is approached.
However, SCEs in DG MOSFETs could arise by the
perturbation of the lateral potential profile, which would yield
drain-induced barrier lowering (DIBL) and short-channel-
induced barrier lowering (SCIBL). Therefore, it is important to
understand these effects in developing a short-channel
threshold voltage (V) model for DG devices. In this paper, the
long-channel V; for DG devices, including channel-doping
dependency of Vi, is analyzed, and then DG DIBL and SCIBL
effects are modeled. A compact physical V; model is introduced
for short-channel double-gate (DG) devices. The V, model is
presented with only process-based parameters. This insightful
work would be useful for developing SPICE-compatible DG
device model [3] and optimizing DG device/circuit.

II. LONG-CHANNEL THRESHOLD VOLTAGE
The DG device structure is illustrated in Fig. 1. The long-
channel V, for asymmetrical (n"/p* polysilicon gate) DG

nMOSFET is physically derived with only four key process-
based device parameters, namely front-gate oxide thickness
(toxf) and back-gate oxide thickness (t,yp), Si-film thickness

(ts;), and channel-doping density (N4):
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where E, is the band gap, ¢ = (kgT/q)In(Na/n;) is the film-
body Fermi potential in p-type Si, r = 3t /(3toyp, + ts;) is the
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gate-gate coupling factor [4], Pgrs = -Ey/2q - ¢ and Dgpg =
Ey/2q - ¢p are the front and back gate-body work-function
differences [5], Qp = -qNutg; is the depletion charge density,
Coxt = Eoxt/toxr 18 the front-gate oxide capacitance, and Cg; =
£gi/ts; is the Si-film capacitance. For symmetrical DG device,
the device parameters are identical for the front and back
channels and gates, hence setting @G = Pps and togr = toxp

for r in (1) yields the analytical Vi(sypy).

Front Gate

Back Gate

Fig. 1. The double-gate (DG) nMOSFET structure. For the

asymmetrical device, the front and back gates are n* and p*
polysilicon, respectively. For the symmetrical device with intrinsic-
Si or lightly-doped film body, the gates should have near-mid-gap
work functions for V; control.

Fig. 2 shows MEDICI [6]-predicted current-voltage
characteristics for the asymmetrical nMOSFET at low Vg (=

0.05 V); V,; can be estimated by linear extrapolation at the
maximum value of transconductance, g, = dIpg/dVgs. The
model prediction is confirmed by MEDICI-simulated results in
Fig. 3. Fig. 4 shows model-predicted V; vs. channel-doping
density (N,) for asymmetrical nMOSFETSs. As Ny is increased,
op in (1) is increased, but it does not effect V; unless Q,, terms
are significant because the value of (®gsg + rPgpg)/(1 + 1) is
decreased by the same amount as the increase of ¢p. Note that

changing channel-doping type from N, to Np in the Si film of
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Fig. 2. MEDICl-predicted Ipg and transconductance (g,,) vs. Vgg

characteristics of the asymmetrical DG nMOSFET at Vg =0.05 V;
V., is estimated by linear extrapolation at the maximum value of g ..
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Fig. 3. V; model (based on (1)) and MEDICI-simulated results for
long-channel asymmetrical nMOSFETs with varying r = 3t/
(3t0xb + tSi)’

DG nMOSFETs does not effect on DG device characteristics
based on (1).

III. DIBL

In several respects, DG MOSFETs have much less severe
SCEs than conventional bulk-Si MOSFETSs. In DG devices, the
electric field generated by the drain is better screened from the
source end of the channel, due to the two-gate control. The
lightly-doped and/or thin body in DG devices yields negligible
depletion charge shared by the gates. However, SCEs in DG
MOSFETs could arise by perturbation of lateral potential
profile, which yields DIBL.
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Fig. 4. Model-predicted V, vs. channel-doping density (N,) for
asymmetrical nMOSFETs. V, is increased as tg; is decreased and
toxf = toxp 1S increased.

The DIBL model is derived as with only process-based
parameters based on two-dimensional (2-D) Laplace’s
equation, Gauss’s law, and physical approximations
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where ty is the depletion width and o = 3ty /ty [7]. The

assumed source-to-drain profile (in y) is shown in Fig. 5, which
defines that the metallurgical channel length (L) is 18 nm,
but the effective channel length (L) is 25 nm [5]. Fig. 6 shows
MEDIClI-predicted AV, between Vg = 0.05 V and 1 V versus
L.¢r, compared with the model predictions based on (2) and (3).
From the relation between Ay and AVypgr), the DIBL-
induced threshold shift can be analyzed as AVyppr) = (dVgs/
dysp)AYepipL) The models are quite consistent with

MEDICI-simulated results for bulk-Si and DG devices. Note
that DIBL is comparable in asymmetrical and symmetrical DG
devices, but is dramatically reduced compared with that in the
bulk-Si device.

IV. SCIBL

Due to the much reduced depletion charge for the lightly-
doped and/or ultra thin Si-film body, DG device is immune of
charge-sharing effect, a significant factor of V;, roll-off for bulk-
Si or PD/SOI devices. However, it has been shown by a device
simulation that V; of DG device is a function of Lo [8]. This is
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Fig. 5. MEDICI-predicted source-to-drain doping profile for the
asymmetrical and symmetrical DG nMOSFETSs: L. = 25 nm and
Liper =18 nm.
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Fig. 6. MEDICl-predicted AVpgy, (defined as parallel shift in
Ips-Vgs curve between Vpg = 0.05 V and 1.0 V) vs. Loy

characteristics for the bulk-Si, asymmetrical DG, and symmetrical
DG nMOSFETs, which have equal I for Log = 25 nm. DG

devices have equal ty¢ = tyy, = 1.5 nm and tg; = 5 nm. Models are
based on (2) and (3).

due to a significant phenomenon for extremely scaled device
(Legs < 50 nm) called short-channel-induced barrier lowering
(SCIBL).

Fig. 7 depicts longitudinal electric potential variations for a
long- and an extremely short-channel nMOSFET. The potential
for Vpg = 0 is written as y(x,y) = y(x) + Ay,(x,y) where
y(x) is a one-dimensional (1-D) potential and Ay,(x,y) is an
incremental potential induced by 2-D SCEs. For extremely
scaled Lqg, Ay,(x,y) is zero only near y = L.g/2 as shown in
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Fig. 7. Analysis for longitudinal electric potential variations of a
long- and an extremely short-channel nMOSFETs for Vpg = 0;
Y(x,y) = Y((x) + Ay,(x,y) where y(x) is a 1-D potential and
Ay, (x,y) is an 2-D incremental potential, and V,; is a built-in
potential of source-body junction. As L. increases, Ay,(x,y) = 0
occurs for more y values. As Vg increases, Ay,(xX,y) decreases.
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Fig. 8. MEDICI-predicted longitudinal electric potential profile of a
long- and an extremely short-channel nMOSFETs for Vpg = 0.05

V. Note that Ey at the source is not significantly changed as Leg
decreases.

Fig. 7. Note that this situation occurs even for well-designed
devices with Lg < 25 nm, based on MEDICI-simulated results
as shown in Fig. 8, and it can be called short-channel-induced
barrier lowering (SCIBL). The region where Ay,(x,y) is not
zero, induces less vertical controllability or more 2-D SCEs. As
Vs is increased, Ay,(x,y) is reduced as indicated in Fig. §;
hence two gates in DG devices enable better control of SCEs.
2-D Laplace’s equation, Gauss’s law, and physical
approximations yield compact SCIBL model as
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Fig. 9. MEDICI-predicted subthreshold current-voltage
characteristics of (Leg = 25, 23, 21, 19 nm) asymmetrical DG

nMOSFET at Vg =0.05 V.
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Fig. 9 depicts MEDICI-predicted subthreshold current-voltage
characteristics of asymmetrical DG nMOSFET for low Vpg.
Fig. 10 shows the models are quite consistent with MEDICI-
simulated results for bulk-Si and DG devices. Note that SCIBL
is comparable in asymmetrical and symmetrical DG devices,
but is dramatically reduced compared with that in the bulk-Si
device. Now, from (1), (3), and (5), V; for short-channel
asymmetrical DG nMOSFET would be analytically expressed
as

o, 9,
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By setting @G5 = Pgpg and ty,r = toyp in 1, (6) could yield V;
for short-channel symmetrical DG device.

V. CONCLUSIONS
Reliable compact physical V models are presented for
extremely scaled DG devices and bulk-Si devices with
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Fig. 10. MEDICI-predicted AV scrpr) V- Legr characteristics. Note
that AVgcrpy, is defined as a parallel shift of the Ing-Vgg curve
between Log = 25 nm and the shorter L in Fig. 9.

process-based parameters. This work also identifies SCEs
for future scaled devices and provides the methodology for
physical DG device modeling and the insight for DG device/
circuit design optimization.
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