Physical Compact Model for Threshold Voltage in Short-Channel Double-Gate Devices Keunwoo Kim, Jerry G. Fossum*, and Ching-Te Chuang IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A *University of Florida, Gainesville, FL 32611-6130, U.S.A. Phone: (914) 945-1336; Fax: (914) 945-1358; E-mail: kkim@us.ibm.com Abstract- Compact physics/process-based model for threshold voltage in double-gate devices is presented. Drain-induced barrier lowering and short-channel-induced barrier lowering models for double-gate and bulk-Si devices are derived. The validity and predictability of the models are demonstrated and confirmed by numerical device simulation results for extremely scaled ($L_{\rm eff}=25~{\rm nm}$) double-gate and bulk-Si devices. #### I. INTRODUCTION Due to the excellent control of short-channel effects (SCEs), double-gate (DG) MOSFETs [1] can be scaled beyond bulk-Si (or PD/SOI) CMOS with improved device/circuit performance as the end of ITRS roadmap [2] is approached. However, SCEs in DG MOSFETs could arise by the perturbation of the lateral potential profile, which would yield drain-induced barrier lowering (DIBL) and short-channelinduced barrier lowering (SCIBL). Therefore, it is important to understand these effects in developing a short-channel threshold voltage (V_t) model for DG devices. In this paper, the long-channel V_t for DG devices, including channel-doping dependency of Vt, is analyzed, and then DG DIBL and SCIBL effects are modeled. A compact physical V_t model is introduced for short-channel double-gate (DG) devices. The V_t model is presented with only process-based parameters. This insightful work would be useful for developing SPICE-compatible DG device model [3] and optimizing DG device/circuit. # II. LONG-CHANNEL THRESHOLD VOLTAGE The DG device structure is illustrated in Fig. 1. The long-channel V_t for asymmetrical $(n^+/p^+$ polysilicon gate) DG nMOSFET is physically derived with only four key process-based device parameters, namely front-gate oxide thickness (t_{oxf}) and back-gate oxide thickness (t_{oxb}) , Si-film thickness (t_{Si}) , and channel-doping density (N_A) : $$V_{t(asym)} = \frac{E_g}{2q} + \phi_B + \frac{(\Phi_{GfS} + r\Phi_{GbS}) - \left(\frac{Q_b}{C_{oxf}} - r\frac{Q_b}{2C_{Si}}\right)}{1 + r} \quad (1)$$ where E_g is the band gap, $\phi_B = (k_B T/q) ln(N_A/n_i)$ is the film-body Fermi potential in p-type Si, $r = 3t_{oxf}/(3t_{oxb} + t_{Si})$ is the gate-gate coupling factor [4], $\Phi_{GfS} = -E_g/2q - \phi_B$ and $\Phi_{GbS} = E_g/2q - \phi_B$ are the front and back gate-body work-function differences [5], $Q_b = -qN_At_{Si}$ is the depletion charge density, $C_{oxf} = \epsilon_{oxf}/t_{oxf}$ is the front-gate oxide capacitance, and $C_{Si} = \epsilon_{Si}/t_{Si}$ is the Si-film capacitance. For symmetrical DG device, the device parameters are identical for the front and back channels and gates, hence setting $\Phi_{GfS} = \Phi_{GbS}$ and $t_{oxf} = t_{oxb}$ for r in (1) yields the analytical $V_{t(sym)}$. **Fig. 1.** The double-gate (DG) nMOSFET structure. For the asymmetrical device, the front and back gates are n^+ and p^+ polysilicon, respectively. For the symmetrical device with intrinsic-Si or lightly-doped film body, the gates should have near-mid-gap work functions for V_t control. Fig. 2 shows MEDICI [6]-predicted current-voltage characteristics for the asymmetrical nMOSFET at low V_{DS} (= 0.05 V); V_t can be estimated by linear extrapolation at the maximum value of transconductance, $g_m = dI_{DS}/dV_{GS}$. The model prediction is confirmed by MEDICI-simulated results in Fig. 3. Fig. 4 shows model-predicted V_t vs. channel-doping density (N_A) for asymmetrical nMOSFETs. As N_A is increased, φ_B in (1) is increased, but it does not effect V_t unless Q_b terms are significant because the value of $(\Phi_{GfS} + r\Phi_{GbS})/(1+r)$ is decreased by the same amount as the increase of φ_B . Note that changing channel-doping type from N_A to N_D in the Si film of **Fig. 2.** MEDICI-predicted I_{DS} and transconductance (g_m) vs. V_{GS} characteristics of the asymmetrical DG nMOSFET at $V_{DS} = 0.05~V$; V_t is estimated by linear extrapolation at the maximum value of g_m . **Fig. 3.** V_t model (based on (1)) and MEDICI-simulated results for long-channel asymmetrical nMOSFETs with varying $r = 3t_{oxf}/(3t_{oxb} + t_{Si})$. DG nMOSFETs does not effect on DG device characteristics based on (1). #### III. DIBL In several respects, DG MOSFETs have much less severe SCEs than conventional bulk-Si MOSFETs. In DG devices, the electric field generated by the drain is better screened from the source end of the channel, due to the two-gate control. The lightly-doped and/or thin body in DG devices yields negligible depletion charge shared by the gates. However, SCEs in DG MOSFETs could arise by perturbation of lateral potential profile, which yields DIBL. **Fig. 4.** Model-predicted V_t vs. channel-doping density (N_A) for asymmetrical nMOSFETs. V_t is increased as t_{Si} is decreased and $t_{oxf} = t_{oxb}$ is increased. The DIBL model is derived as with only process-based parameters based on two-dimensional (2-D) Laplace's equation, Gauss's law, and physical approximations $$\Delta \psi_{sf(DIBL)}^{bulk} \cong \frac{3t_d t_{ox} V_{DS}}{L_{aff}^2 (1+\alpha)}$$ (2) and $$\Delta \Psi_{sf(DIBL)}^{DG} \cong \frac{3t_{Si}t_{oxf}V_{DS}}{L_{eff}^2}$$ (3) where t_d is the depletion width and $\alpha=3t_{ox}/t_d$ [7]. The assumed source-to-drain profile (in y) is shown in Fig. 5, which defines that the metallurgical channel length (L_{met}) is 18 nm, but the effective channel length (L_{eff}) is 25 nm [5]. Fig. 6 shows MEDICI-predicted ΔV_t between $V_{DS}=0.05~V$ and 1 V versus L_{eff} , compared with the model predictions based on (2) and (3). From the relation between $\Delta \psi_{sf}$ and $\Delta V_{t(DIBL)}$, the DIBL-induced threshold shift can be analyzed as $\Delta V_{t(DIBL)} \cong (dV_{GS}/d\psi_{sf})\Delta\psi_{sf(DIBL)}$. The models are quite consistent with MEDICI-simulated results for bulk-Si and DG devices. Note that DIBL is comparable in asymmetrical and symmetrical DG devices, but is dramatically reduced compared with that in the bulk-Si device. # IV. SCIBL Due to the much reduced depletion charge for the lightly-doped and/or ultra thin Si-film body, DG device is immune of charge-sharing effect, a significant factor of V_t roll-off for bulk-Si or PD/SOI devices. However, it has been shown by a device simulation that V_t of DG device is a function of $L_{\rm eff}$ [8]. This is Fig. 5. MEDICI-predicted source-to-drain doping profile for the asymmetrical and symmetrical DG nMOSFETs: $L_{\rm eff}$ = 25 nm and $L_{\rm met}$ = 18 nm. **Fig. 6.** MEDICI-predicted $\Delta V_{t(DIBL)}$ (defined as parallel shift in I_{DS} - V_{GS} curve between $V_{DS}=0.05$ V and 1.0 V) vs. L_{eff} characteristics for the bulk-Si, asymmetrical DG, and symmetrical DG nMOSFETs, which have equal I_{off} for $L_{eff}=25$ nm. DG devices have equal $t_{oxf}=t_{oxb}=1.5$ nm and $t_{Si}=5$ nm. Models are based on (2) and (3). due to a significant phenomenon for extremely scaled device ($L_{\rm eff}$ < 50 nm) called short-channel-induced barrier lowering (SCIBL). Fig. 7 depicts longitudinal electric potential variations for a long- and an extremely short-channel nMOSFET. The potential for $V_{DS}=0$ is written as $\psi(x,y)=\psi_1(x)+\Delta\psi_2(x,y)$ where $\psi_1(x)$ is a one-dimensional (1-D) potential and $\Delta\psi_2(x,y)$ is an incremental potential induced by 2-D SCEs. For extremely scaled L_{eff} , $\Delta\psi_2(x,y)$ is zero only near $y=L_{eff}/2$ as shown in **Fig. 7.** Analysis for longitudinal electric potential variations of a long- and an extremely short-channel nMOSFETs for $V_{DS}=0$; $\psi(x,y)=\psi_1(x)+\Delta\psi_2(x,y)$ where $\psi_1(x)$ is a 1-D potential and $\Delta\psi_2(x,y)$ is an 2-D incremental potential, and V_{bi} is a built-in potential of source-body junction. As L_{eff} increases, $\Delta\psi_2(x,y)=0$ occurs for more y values. As V_{GS} increases, $\Delta\psi_2(x,y)$ decreases. **Fig. 8.** MEDICI-predicted longitudinal electric potential profile of a long- and an extremely short-channel nMOSFETs for $V_{DS}=0.05$ V. Note that E_y at the source is not significantly changed as L_{eff} decreases. Fig. 7. Note that this situation occurs even for well-designed devices with $L_{eff} \! < \! 25$ nm, based on MEDICI-simulated results as shown in Fig. 8, and it can be called short-channel-induced barrier lowering (SCIBL). The region where $\Delta \psi_2(x,y)$ is not zero, induces less vertical controllability or more 2-D SCEs. As V_{GS} is increased, $\Delta \psi_2(x,y)$ is reduced as indicated in Fig. 8; hence two gates in DG devices enable better control of SCEs. 2-D Laplace's equation, Gauss's law, and physical approximations yield compact SCIBL model as **Fig. 9.** MEDICI-predicted subthreshold current-voltage characteristics of (L_{eff} = 25, 23, 21, 19 nm) asymmetrical DG nMOSFET at V_{DS} = 0.05 V. $$\Delta \Psi_{sf(SCIBL)}^{bulk} \cong \frac{9t_d t_{ox}(E_g/2q)}{L_{eff}^2(1+\alpha)} \tag{4}$$ and $$\Delta \psi_{sf(SCIBL)}^{DG} \cong \frac{9t_{Si}t_{oxf}(E_g/2q)}{L_{eff}^2} \ . \tag{5}$$ Fig. 9 depicts MEDICI-predicted subthreshold current-voltage characteristics of asymmetrical DG nMOSFET for low V_{DS} . Fig. 10 shows the models are quite consistent with MEDICI-simulated results for bulk-Si and DG devices. Note that SCIBL is comparable in asymmetrical and symmetrical DG devices, but is dramatically reduced compared with that in the bulk-Si device. Now, from (1), (3), and (5), V_{t} for short-channel asymmetrical DG nMOSFET would be analytically expressed as $$\begin{split} V_{t(asym)} &= \frac{E_g}{2q} + \phi_B + \frac{(\Phi_{GfS} + r\Phi_{GbS}) - \left(\frac{Q_b}{C_{oxf}} - r\frac{Q_b}{2C_{Si}}\right)}{1 + r} \\ &- \frac{3t_{Si}t_{oxf}V_{DS}}{L_{eff}^2} - \frac{9t_{Si}t_{oxf}(E_g/2q)}{L_{eff}^2} \ . \end{split} \tag{6}$$ By setting $\Phi_{GfS} = \Phi_{GbS}$ and $t_{oxf} = t_{oxb}$ in r, (6) could yield V_t for short-channel symmetrical DG device. ### V. CONCLUSIONS Reliable compact physical V_t models are presented for extremely scaled DG devices and bulk-Si devices with Fig. 10. MEDICI-predicted $\Delta V_{t(SCIBL)}$ vs. L_{eff} characteristics. Note that $\Delta V_{t(SCIBL)}$ is defined as a parallel shift of the I_{DS} - V_{GS} curve between L_{eff} = 25 nm and the shorter L_{eff} in Fig. 9. process-based parameters. This work also identifies SCEs for future scaled devices and provides the methodology for physical DG device modeling and the insight for DG device/circuit design optimization. ## REFERENCES - [1] D. J. Frank, S. E. Laux, and M. V. Fischetti, "Monte Carlo simulation of 30 nm dual-gate MOSFET: how short can Si go?," *IEDM Tech. Dig.*, pp. 553-556, Dec. 1992. - [2] International Technology Roadmap for Semiconductors (ITRS), 2002 (http://public.itrs.net). - [3] M.-H. Chiang and J. G. Fossum, "Process-based compact model for double-gate MOSFETs," Pro. Tenth Int. Symp. on SOI Technology and Devices, ECS vol. 2001-3, pp. 421-426, Mar. 2001. - [4] K. Kim and J. G. Fossum, "Double-gate CMOS: symmetrical-versus asymmetrical-gate devices," *IEEE Trans. Electron Devices*, vol 48., pp. 294-299, Feb. 2001. - [5] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices, NY: Cambridge Univ. Press, 1998. - [6] Taurus-Medici: Industry-standard simulation tool. Mountain View, CA: Synopsis, Inc., 2003. - [7] S. Veeraraghavan and J. G. Fossum, "A Physical short-channel model for the thin-film SOI MOSFET applicable to device and circuit CAD," *IEEE Trans. Electron Devices*, vol. 35, pp. 1866-1875, Nov. 1988. - [8] H.-S. P. Wong, D. J. Frank, and P. M. Solomon, "Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25nm channel length generation," *IEDM Tech. Dig.*, pp. 407-410, Dec. 1998.