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Abstract—The effects of stress on equilibrium point defect 
populations and on dopant diffusion in strained semiconductors 
are reviewed.  The thermodynamic relationships presented 
permit the direct comparison of hydrostatic and biaxial stress 
experiments and of atomistic calculations of defect volumetrics 
for any proposed mechanism.  Experiments on the effects of 
pressure and stress on the diffusivity of B and Sb are reviewed.  
The opposite effects of hydrostatic compression and of biaxial 
compression on the diffusivity are a consequence of the non-local 
nature of the point defect formation volume.  Comparisons 
between these effects are made to determine quantitatively the 
anisotropy of the migration volume.  The requirements to permit 
the prediction of the effect of an arbitrary stress state on 
diffusion in an arbitrary direction are discussed.   
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I.  INTRODUCTION 
Because understanding and controlling diffusion-related 

phenomena become increasingly important as semiconductor 
device dimensions decrease, atomic diffusion in Si has been 
heavily studied [1].  The study of stress effects on diffusion, 
which have been characterized experimentally starting a decade 
ago [2-5], is important for understanding the processing and 
stability of strained Si and Si-Ge films.  Additionally, although 
bulk wafers cannot sustain significant nonhydrostatic stresses 
at diffusion temperatures, such stresses are sustained near 
interfaces with patterned films and in the films themselves. 
These stresses can be quite large due to growth stresses, 
interfacial stresses, thermal expansion mismatch, or 
dislocations [6].  The complexities associated with 
nonhydrostatic stress states in patterned materials (as well as in 
initially biaxially strained planar films after the breakdown of a 
smooth, flat film morphology) make the interpretation of stress 
effects in terms of basic mechanisms and the prediction of 
stress effects from known mechanisms quite difficult.  
However, in certain cases, a measurement of the diffusivity 
under hydrostatic pressure and simple nonhydrostatic stress 
states can provide sufficient information to permit the 
prediction of behavior under arbitrary stress states [7-12].   

The atomic diffusivity in a material with cubic 
crystallography is given by 

 D = 1
6

λ2 ν f exp
*

B

G
k T

 −
  
 

; (1) 

 G* = Gf+Gm,  (2) 

where λ is the jump distance, ν is an effective vibrational 
frequency [13], G* is the Gibbs free energy of activation,  Gf is 
the Gibbs free energy of formation of the mobile species, Gm is 
the Gibbs free energy of migration of the mobile species, and 
departures from a true random-walk are accounted for by the 
correlation factor f.  For example, for diffusion of an impurity 
"A" by a normal vacancy mechanism, the mobile species 
(which is called an A-V complex) is A on a lattice site bound to 
a vacancy, and Gf is the change in Gibbs free energy when one 
vacancy is created at a kink site on a step at the surface and 
placed next to the impurity in the lowest free energy 
configuration.  The free energy of migration Gm is the change 
in free energy when the mobile species moves to the saddle 
point of its migration path.   

II. DIFFUSION UNDER STRESS 
To understand the various influences of pressure and stress 

on the diffusivity [7,14], one must consider both the effects on 
the point defect concentrations [6,7,15] and on the point defect 
mobilities [11,16,17].  

The thermodynamics of point defect formation in heavily 
dislocated crystals under hydrostatic or nonhydrostatic stress 
has been well understood for decades.  When experimental 
conditions are such that the point defect concentrations 
equilibrate with sources and sinks rapidly compared to the 
experimental time scale, then the pressure-dependence of the 
point defect concentration is characterized by the point defect 
formation volume Vf, a scalar.  The new situation that requires 
the assignment of tensor properties to the formation volume is 
that large single crystals entirely free of extended defects, at 
which point defects can internally equilibrate, are now used.  
Consequently, in a single crystal free of internal point defect 
sources, the volume change upon point defect formation does 
not tell the entire story:  the crystal changes shape, the shape 
change depends upon which surface(s) are sources/sinks for 
defect equilibration1, and stresses interact with the components 

                                                           
1 For example, the thermal expansion coefficient of a thin wafer free of 

extended defects is predicted to be greater in the thin direction than in the 
orthogonal directions because most of the thermally injected point defects 
come from the thin direction [8]. 
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of that shape change in the characteristic stress : strain tensor 
manner.  

Let us focus on the diffusion coefficient in the direction 
normal to an (001) surface, which is the direction measured in 
practically all experiments, and let the dopant diffusivity in this 
direction be D33(T, σσσσ), where σσσσ is the stress tensor.  The effect 
of stress on D33 is characterized by the activation strain tensor 
[7] V* with components  

 33* ln
ij B

ij

D
V k T

σ
 ∂

=   ∂ 
.    (3) 

Under hydrostatic pressure D is isotropic and σ11 = σ22 = σ33 = 
-p.  The pressure effect is then minus the sum of these three 
uniaxial effects.  In this case the pressure effect is characterized 
by scalar activation volume V*:  

 ln* B
DV k T

p
 ∂= −  ∂ 

;    (4) 

V* is therefore the sum of the three diagonal elements of the 
activation strain tensor2.  The activation volume can also be 
written as the pressure-derivative of the Gibbs free energy of 
activation:  

 V* = *G
p

 ∂
 ∂ 

;    (5) 

We can interpret (5) to mean that pressure affects the 
diffusivity through a Boltzmann factor in the change in G* in 
(1), where the change is due to the pV work done by the 
pressure medium against the volume changes associated with 
defect formation and migration3.  These changes are shown 
schematically in Fig. 1.  

Under nonhydrostatic stress, the Gibbs free energy is 
difficult to define, but the stress-induced change in diffusivity 
can still be written as a Boltzmann factor in the work done by 
the interaction of the activation strain tensor and the stress state 
[17] as indicated below.  As the activation strain tensor is the 
sum of the formation strain tensor and the migration strain 
tensor, let us consider them separately.  

                                                           
2 To encompass cases in which several mechanisms contribute 

significantly to transport, (3) and (4) are more properly interpreted as the 
apparent activation strain tensor and volume arising from the weighted 
contributions of those several mechanisms.  In the ensuing discussion we 
assume a single mechanism for simplicity. 

3 Neglecting variations in ν and λ is practically always justified , but the 
pressure-dependence of f may or may not be negligible, depending on whether 
there is a significant pressure-dependence to the defect-impurity interaction.  
This pressure effect is analogous to the additional term in the expression for 
the apparent activation enthalpy introduced by a significantly temperature-
dependent binding, which has been analyzed by Hu [22]. 

For point defects formed at the (001) surface, the dimension 
changes of the crystal upon point defect formation can be 
described by the formation strain tensor Vf:  

 
0 1

0 1
3

1 1

r
f V

   
   = ±Ω +   
      

V . (6) 

The + sign is for vacancy formation and the – sign is for 
interstitial formation throughout this paper.  Ω is the atomic 
volume, representing the dimension changes of the crystal upon 
creation or annihilation of a lattice site, before permitting 
relaxation of the lattice around the newly-created point defect.  
The relaxation volume Vr propagates out elastically to all of the 
sample surfaces and provides equal contributions along all 
axes, on average, after point defect equilibration throughout the 
sample volume.  The dependence of the equilibrium defect 
concentration Ce on applied stress σσσσ can be written  

Figure 1.  Cartoon of formation and migration volumes for vacancy (top) and 
interstitialcy (bottom) diffusion mechanisms.  Saddle point in migration path 
is center column.  PVf and PVm interaction with externally applied pressure 
determines pressure-dependence of equilibrium point defect concentrations 

and mobilities, respectively.  If Vf for vacancies is positive and Vm for 
vacancies is negative, as depicted at top, then increasing pressure squeezes out 

vacancies (raises Gf = Ef-TSf+PVf) and increases their mobility (reduces 
Gm=Em-TSm+PVm).  Tensor character of volumes is evident from the work 
done against a nonhydrostatic stress state during the processes depicted.   

 
Ce(σσσσ)
Ce(0)

  = exp
Bk T

 
 
 

fσ : V
,  (7)  

where Vf has the elements 0 and 1 placed appropriately in (6) 
for the surface at which the defects equilibrate, and the colon 

indicates the inner product 
3

, 1

f
ij ij

i j
Vσ

=
∑ .  These dimension 

changes and their interactions with nonhydrostatic stresses are 
indicated schematically for a simple case in Fig. 2.  
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Phenomenologically, we expect that the defect mobility M 
in directions parallel and perpendicular to the direction of 
applied stress may differ [11,16,17].  D33 depends on M33, the 
mobility normal to the (001) surface.  The effect of stress on 
M33 is characterized by the migration strain tensor, which is 
expected to have the form  

 33

||

m

m

m

V
V

V

⊥

⊥

 
 =  
  

mV  . (8)  

mV⊥  and ||
mV , respectively, are the dimension changes of the 

crystal parallel and perpendicular to the direction of net 
transport when the point defect reaches its saddle point.  As the 
diffusivity is proportional to the product of the concentration 
and mobility of defects, the effect of stress on the diffusivity in 
the direction normal to the surface is obtained by the 
combination of (6) and (8):  

 
( )
( )

33

33

exp
0 B

D
D k T

σ  
=   

 

33
*σ : V

;  (9)  

 f m= +33 33
*V V V  .  (10)  

 

Figure 2.  Non-local vacancy formation strain tensor.  Pressures P1, and P3, of 
incompressible fluids (blue) in contact with (100) and (001) faces, are 

maintained by pistons driven by masses m1 and m3.  Crystal volume changes 
by Vf upon vacancy formation at (100) or (001) surface but work done against 
gravity differs (mg∆h = PVf) causing different point defect concentrations in 

local equilibrium with (100) and (001) surfaces.  

Hydrostatic pressure then influences D33 according to  

 
( )
( )

33

33

exp
0

r m

B

p V VD p
D k T

  − ±Ω + +  =
 
 

 ,  (11)  

where the sum of the bracketed terms in (11) is the 
conventionally-defined scalar activation volume, and the 

conventionally-defined scalar migration volume Vm is the trace 
of (8).  Biaxial stress influences D33 according to  

 
( )

( )
||

33

33

2
3exp

0

r m m
biax

biax

B

V V VD
D k T

σσ
  + −    =
 
 
 

 .  (12)  

III. EXPERIMENTAL RESULTS 
We have used a clean and hydrostatic liquid Ar pressure 

medium and measured a pressure-enhanced diffusivity of B [9] 
in Si, characterized by an activation volume of V* = -0.17 Ω, 
and a pressure-retarded diffusivity of Sb [10] in Si, 
characterized by an activation volume of V* = +0.07 Ω.  Note 
that these values are much smaller in magnitude than one 
atomic volume, and that such a small pressure effect implies 
from (11) that Vr + Vm is large enough in magnitude to nearly 
offset the ±Ω term.  Hence we should expect the stress effect in 
(12) to be relatively large.  

The influence of biaxial stress on the diffusivity has been 
characterized experimentally [2-5] by the apparent change in 
activation energy with biaxial (tensile) strain, εbiax, at constant 
composition:  

 33ln
' B

biax

D
Q k T

ε
∂

≡ −
∂

 .  (13)  

By comparison to (13), the combination of volumes in square 
brackets in (12) is equal to –Q'/Y, where the biaxial modulus Y 
is the ratio of Young's modulus to one minus Poisson's ratio.  
Additionally, one must take care to isolate experimentally the 
stress effect from the composition effect; this has been done in 
some of the most recent experiments [3-5].  

To predict the hydrostatic or biaxial stress effects with Eqs. 
(11) or (12), respectively, the three parameters Vr, mV⊥  and ||

mV  
must be known.  However, certain combinations of 
experimental observables are independent of some of the 
parameter values.  Combining (8) and (11)-(13) results in 

 ( )||
* 3 '

2
m mQV V V

Y ⊥+ = ±Ω + −  .  (14)  

If we assume that the anisotropy in the migration strain tensor 
(the "migration strain anisotropy" or "migration volume 
anisotropy") is negligible, then the right-hand side of (14) 
should be +1 Ω for a vacancy mechanism and -1 Ω for an 
interstitial-based mechanism. It turns out that there are many 
cases where it has been argued that crystal symmetry dictates 
zero migration strain anisotropy.   

The cases of Sb and B diffusion in Si are particularly 
simple because there is a growing consensus that the former 
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diffuses almost entirely by a vacancy mechanism and the latter 
diffuses almost entirely by an interstitial-based mechanism 
[18].  For the simple vacancy mechanism the anisotropy in the 
macroscopically-measured migration strain in (001) wafers 
should be zero due to crystal symmetry [7].  For boron 
diffusion by the interstitialcy mechanism in (001) wafers Daw 
and coworkers [11,12] predict that the migration strain 
anisotropy is zero, due to a detailed consideration of the effects 
of strain on the 768 migration paths of the Boron-self-
interstitial pair that are energetically degenerate in unstrained 
material.  My own interpretation of their result is that zero 
migration strain anisotropy is a consequence of having a high 
enough symmetry that there is a sufficient degeneracy of 
diffusion pathways.  A particular stress state then reduces the 
barrier to some of them and raises the barrier to others.  A 
symmetry-equivalent stress state (e.g. nonzero σ33 with other 
elements zero instead of a nonzero σ11 with other elements 
zero), however, has the same effect on a symmetry-equivalent 
set of migration barriers.  Interestingly, they predict a 
significant migration strain anisotropy for vertical boron 
diffusion in (111) wafers.  The minimal set of conditions 
sufficient for zero migration strain anisotropy is currently not 
known.   

Figure 3.  Biaxial strain effect on Sb diffusion in Si-Ge thin film at constant 
composition.  Data points from Kringhoj et al. [5].  The lines have been 

chosen to go through the data points at zero strain.  The slopes of the lines are 
determined from (14) with no free parameters (zero migration strain 

anisotropy, as predicted), and indicate the value of Q' expected for the biaxial 
experiment by inputting our measured value of V* under hydrostatic pressure.  

The offset between lines is a free parameter representing the effect of 
composition at constant strain. 

Equation (14) with zero migration-strain anisotropy was 
used [7] to compare the value of Q' reported by Kringhoj et al. 
[5] for Sb diffusion in biaxially strained Si and Si-Ge and V* 
measured in hydrostatically compressed Si.  The result is  

V* + 
3
2 

Q'
Y   = (+0.93 ± 0.20) Ω for a compressively strained 

Si91Ge9 alloy and V* + 
3
2 

Q'
Y   = (+1.20 ±0.33) Ω for tensile Si.  

With no free parameters, these results are in excellent 

agreement with the prediction of +1 Ω, i.e. zero migration-
strain anisotropy, for a simple vacancy mechanism.  
Graphically, this agreement is illustrated in Fig. 3, where the 
biaxial strain effect is predicted from the hydrostatic 
measurement using this value in (14) and compared to the 
measured biaxial effect.  

A similar analysis has been performed for the existing 
experiments on B diffusion in Si [4,8,9].  We extracted values 
of Q' from the measurements of Kuo et al.[4] on the effect of 
biaxial strain on boron diffusion (D33) in Si1-xGex films:  the 
solid lines in Fig. 4 are our fits to Kuo et al.’s data with slopes 
representing Q' = +5.44, -6.01, and -5.22 eV per unit strain for 
x = 0, 0.1, and 0.2 respectively.  Using (14) we can interpret the 
slopes of the solid lines as a "measurement" of the migration 
strain anisotropy - a determination of the value required to 
reconcile the observed hydrostatic and biaxial experimental 
results with an interstitial-based mechanism.  The result is 
( )|| /m mV V⊥− Ω = +1.19, +0.64, and +0.59 for x = 0, 0.1, and 0.2 
respectively4.  The large values, especially that for pure Si,   

 

Figure 4.  Vertical and predicted lateral diffusivity of B in (001) Si and Si-Ge 
alloys.  Data points are for vertical diffusion in these samples from Kuo et al 
[4].; solid lines are our fits to obtain Q'; dashed lines are lateral diffusivities 

predicted using our measurement of V* and (14). 

must be viewed with suspicion.  We were concerned about 
possible artifacts in the Kuo pure Si data because of the 
opposite slope of the pure Si data and the alloy data in Fig. 4.  
We subsequently obtained some of the sample materials grown 
by Chemical Vapor Deposition (CVD) by Kuo and performed 
hydrostatic pressure D33 measurements on them.  Preliminary 
results indicate an activation volume of +0.03 Ω for the 10% 
Ge alloy and -0.17 Ω for pure Si.  Remarkably, the value for 
Kuo’s pure Si is entirely consistent with the measurements we 

                                                           
4 Here we are making the risky assumption that the activation volume for 

x = 0.20 samples, which we have not measured, is identical to that for x = 0.1.  
If the mechanism is B-Ge pairing then we might expect any Ge effect to 
saturate once the Ge concentration exceeded the B concentration. 
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made (-0.17 Ω) on samples grown by a different technique 
(MBE) in a different laboratory.  Even more remarkable is the 
change in V* caused by the presence of just 10% Ge.  Hence 
our present thinking is that we should take all the experimental 
results, including Kuo’s published values for pure Si, at face 
value for the moment, see what they might imply, and design 
experiments to check for consistency among the various 
experimental and theoretical values and relationships.  
Additionally, we should view with suspicion any assumption 
that mechanisms, or numerical values of activation energies or 
volumes, do not vary significantly with composition.  Although 
there is evidence that the interstitialcy mechanism still 
predominates in boron diffusion in these alloys [19], it is 
possible that B-Ge pairing might be responsible for the 
significant change in Q' and V* caused by alloying with Ge, as 
suggested by Kuo et al.  In fact, it appears that as little as 1% 
Ge causes a significant (0.4 eV) increase in E* for B diffusion 
in Si [20].  Further work, both experimental and theoretical, 
will be required to obtain a consistent and reliable picture.   

Because of these nagging concerns about experimental 
artifacts as well as theoretical over-simplifications, it is very 
risky to rely on hydrostatic and biaxial D33 measurements alone 
for a measurement of the migration strain anisotropy.  A third, 
independent measurement would be a very valuable 
consistency test.  One such measurement would be the effect of 
in-plane biaxial stress upon D11, the diffusivity in a direction 
parallel to the surface.  From (12) and the analogous equation 
for D11, the migration strain anisotropy can be determined 
directly from the result of such an experiment: 

 
( )
( ) ( )11

||
33

expbiax m mbiax

biax

D
V V

D kT
σ σ
σ ⊥

  = −  
  

 (15) 

Our predictions for D11 from this equation, using values of the 
migration strain anisotropy inferred from the measurements of 
Q' and V*, are shown as the dashed lines in Fig. 4. 

IV. PREDICTING ARBITRARY STRESS EFFECTS 
From Eqs. (6) and (8)-(10) it is apparent that for describing 

diffusion in an (001) wafer, the three parameters Vr, ||
mV and 

mV⊥ appear in only two independent combinations, Vr/3+ mV⊥  

and Vr/3+ ||
mV .  Hence if there is a single defect mechanism and 

charge state dominating transport then the prediction of the 
effect of an arbitrary stress state on D33 and D11 requires 
(provided the results are reliable) the theoretical determination 
of the three aforementioned parameters or only two 
independent measurements (e.g., biaxial and hydrostatic stress 
effects).  If symmetry requires the migration strain anisotropy 
to be zero then the number is further reduced.  In the 
fabrication of small devices, diffusion in directions other than 
along the cube axes becomes important.  We therefore discuss 
what further progress is required to permit the prediction of the 
effect of an arbitrary stress state on diffusion in an arbitrary 
direction. 

The theoretical framework requires some further 
development.  If there are multiple species and charge states 
involved in diffusion, clearly the contributions from each must 
be superposed.  Additionally, strain breaks the energetic 
degeneracy of otherwise symmetry-equivalent ground states as 
well as saddle configurations; in principle they must all be 
enumerated and superposed [11] but in practice the minimal set 
of conditions sufficient for zero migration strain anisotropy 
remains to be seen.  Additionally, in a crystal structure whose 
primitive cell has a multiple-atom basis such as Si, each site in 
the basis set must be tracked separately [11].  By comparison, 
the simpler treatment presented in this paper in effect, starting 
with (8), averages immediately over the symmetry-equivalent 
configurations, which is normally expected to be reasonable if 
the degeneracy splitting « kBT but not otherwise. This 
treatment is currently the only one that recognizes the non-local 
nature of the formation strain tensor, which is critical to 
reconciling the qualitatively opposite effects of hydrostatic 
compression and of biaxial compression on the diffusivity. 

In general the activation strain tensor is a fourth rank 
tensor; that is, 

 *ln ij ijkl klD V σ∝  ,  (16)   

where the sum over repeated indices is implied and none of the 
81 elements *

ijklV  is necessarily zero.  Fortunately, often 
symmetry dictates that only a handful be independent.  For a 
given mechanism (ground state - saddle combination) all of the 
information about the macroscopic activation strain tensor and 
its 81 elements is contained within the local configuration 
change during the transition from the ground state to the saddle 
configuration.  For this transition, the migration strain tensor 
reckoned from a coordinate system with one axis (say, the 
third) along the jump direction [11] is given by  

 Ω
m
local  = 









Ω

m
⊥1 Ω

m
12 Ω

m
13

Ω
m
12 Ω

m
⊥2 Ω

m
23

Ω
m
13 Ω

m
23 Ω

m
||

  , (17)   

which has at most six independent elements.  Transforming to 
the crystallographic coordinate system and superposing the 
contributions for the various defect ground-state and saddle-
point orientations then leads to all elements.  If the saddle point 
configuration is sufficiently symmetric the off-diagonal 
elements of m

localΩ  are all zero and the two perpendicular 
components will be equal to each other, reducing the number of 
independent elements to two.  Note, however, that even in a 
structure as symmetric as Si, the situation is not this symmetric.  
The isolated vacancy is believed to have tetragonal Jahn-Teller 
distortions [21].  The diffusion of donor impurities by a 
vacancy mechanism is believed to not have a saddle-point 
configuration in which the impurity has jumped half way into 
the vacancy, but rather to have one in which the impurity and 
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vacancy are at or near third-neighbor sites at opposite ends of a 
hexagonal ring [22], in which case the off-diagonal elements of 

m
localΩ  are not zero.  Some of the outstanding issues discussed 

above are being addressed in current research.  

Once the theoretical formalism is complete, the 
determination of the handful of elements in the relevant 
formation strain tensors and in the m

localΩ  tensors will permit 
the prediction of the effect of an arbitrary stress state on 
diffusion in an arbitrary direction.  These parameters can be 
determined by ab initio density functional theory if all of the 
atoms within the supercell are permitted to relax and the 
supercell is permitted to undergo arbitrary strains.  Certain 
combinations of these parameters are also observable 
macroscopically by designing experiments that isolate the 
effect of certain stress states on diffusion in certain directions.  
This combination of theory and experiment is a promising area 
for the testing of theoretical Hamiltonians and methodologies 
and of models of the relevant diffusion mechanisms.  
Agreement should be expected so long as the point defect 
populations remain in equilibrium with the free surface or with 
some other well-characterized sink.  During transient, non-
equilibrium processes such as defect reactions and clustering, 
strain tensors associated with all the kinetic saddle points and 
metastable species may also be important.  

V. SUMMARY 
Point defect mechanisms are related through 

thermodynamics to the dependence of the diffusivity on 
pressure and stress.  The influences of hydrostatic and biaxial 
stress are interdependent in a predictable way for any proposed 
mechanism.  For Sb in Si, the measured effect of biaxial stress 
on diffusion can be predicted successfully from the hydrostatic 
results with no free parameters.  For B in Si, the migration 
strain anisotropy can be treated as a free parameter and 
adjusted to reconcile hydrostatic and biaxial results; however 
nagging concerns remain about the reliability of the resulting 
picture.  Finally, it appears that the means to predict the effect 
of an arbitrary stress state on diffusion in an arbitrary direction, 
through experimental and theoretical techniques, are within 
reach.  
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