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Abstract— As current device technologies advance into the
sub-continuum regime, they operate at length scales on the
order of the electron and phonon mean free path. The ballistic
conditions lead to strong non-equilibrium at nanometer length
scales. The electron-phonon interaction is not energetically or
spatially uniform and the generated phonons have widely varying
contributions to heat transport. This work examines the micro-
scopic details of Joule heating in bulk silicon with Monte Carlo
simulations including acoustic and optical phonon dispersion.
The approach provides an engineering tool for electro-thermal
analysis of future nano-devices.

I. INTRODUCTION

Understanding heat generation at nanometer scales in silicon
is of great interest and particularly relevant to the heating and
reliability of nanoscale and thin-film transistors. Joule heating
is usually simulated as the dot product of the macroscopic
electric field and current density [1]. This approach does
not account for the microscopic non-locality of the phonon
emission near a strongly peaked electric field region. It also
does not differentiate between electron energy exchange with
the various phonon modes and does not give any spectral
information regarding the types of phonons emitted. The
present work addresses both of these issues: we use a detailed
Monte Carlo (MC) simulation to compute sub-continuum and
phonon mode-specific heat generation rates, with applications
at nanometer length scales.

In silicon, as in most semiconductors, high-field Joule
heating is typically dominated by optical phonon emission.
Optical phonons are slow and they make virtually no con-
tribution to heat transport. Rather, they decay into the faster
acoustic modes which carry the energy away from the hottest
regions. Optical-acoustic decay times are relatively long (on
the order of picoseconds [2]) compared to the electron-phonon
scattering time (tenths of picoseconds). If the generation rate
of optical modes due to Joule heating from current flow is
higher than their rate of decay into acoustic modes, a phonon
energy bottleneck is created and the optical mode density
can build up over time, directly affecting electron transport.
Fig. 1 shows a diagram of these energy transfer processes in
silicon. The dashed lines symbolize the effect of phonons on
the electron population and transport.

II. IMPLEMENTATION

This work uses the Monte Carlo method to compute the
phonon generation rates in physical and momentum space
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Fig. 1. Diagram and characteristic time scales of the energy transfer processes
in silicon. Scattering with low group velocity optical phonons is the dominant
relaxation mechanism for electron energies above 50 meV. This creates a
phonon energy bottleneck until the optical phonons decay into the faster
acoustic modes.

throughout the Brillouin zone. The electron energy bands
are modeled analytically with non-parabolicity parameter
α = 0.5 eV−1 [3] and six ellipsoidal and energetically equiv-
alent conduction band valleys. This is a good approximation
for devices operating at voltages below the silicon bandgap
(1.1 V), such as those of future technologies, and allows
for significantly faster code that is easier to implement and
debug. Full-band simulations [4], [5] have typically been used
at higher voltages, when impact ionization and high energy
transport play a larger role. This isn’t the case for future low-
power nanotechnologies, and consequently the present work
limits the maximum electron energy to 1.1 eV during the
simulation. Sub-bandgap impact ionization is also neglected.

As in the traditional analytic-band approach [3], inelastic
scattering with six types of inter-valley phonons is incorpo-
rated. The inset of Fig. 2 illustrates the ellipsoidal conduction
band valleys and the allowed phonon scattering transitions.
Inter-valley scattering can be of g-type, when electrons scatter
between valleys on the same axis, and of f-type when the scat-
tering occurs between valleys on different axes [6]. Intra-valley
scattering refers to scattering within the same conduction band
valley and usually involves only acoustic phonons [7].

Many typical MC codes (as well as our earlier work [9])
treat intra-valley scattering with a single kind of acoustic
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Fig. 2. Phonon dispersion relationship in silicon in the [100] direction, based
on neutron scattering data (symbols) [8]. Circles and continuous lines mark
longitudinal modes, diamonds and dashed lines mark transverse modes. The
f and g phonons are involved in the inter-valley scattering of electrons [6].

phonon by grouping the longitudinal acoustic (LA) and trans-
verse acoustic (TA) branches into a dispersionless mode with
a single velocity and a single deformation potential. Unlike
the traditional approach, this work considers scattering with
LA and TA modes separately. Each phonon dispersion branch
from Fig. 2 is treated with the isotropic approximation

ωq = ωo + vsq + cq2 (1)

where ωq is the phonon frequency and q its wave vector. For
the acoustic phonons, the parameters vs and c are chosen to
capture the slope of the dispersion near the Brillouin zone
center and the maximum frequency at the zone edge [10]. The
choice of parameters for longitudinal optical (LO) phonons
insures that they meet the zone edge LA frequency. For both
transverse acoustic and transverse optical (TO) phonons the
zone edge slope (group velocity) is fit to zero. The continuous
(longitudinal) and dashed (transverse) lines in Fig. 2 represent
these quadratic approximations, and the fitting coefficients are
listed in Table I. Quartic polynomials would offer a better fit
in the [100] crystal direction but no advantage in the other

TABLE I

QUADRATIC PHONON DISPERSION COEFFICIENTS.

ωo vs c

1013 s−1 105 cm/s 10−3 cm2/s
LA 0.00 9.26 -2.22
TA 0.00 5.24 -2.28
LO 9.88 0.00 -1.60
TO 10.20 -2.57 1.12
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Fig. 3. Computed total phonon scattering spectrum (emission plus absorption)
at a constant field of 40 kV/cm, as a function of phonon energy. The
continuous line is for longitudinal phonons, dashed for transverse and the
dotted vertical line marks the cutoff between the acoustic and optical modes,
near 50 meV.

directions, hence the quadratics are entirely sufficient for this
isotropic approximation. They track the phonon dispersion
data closely, especially in the regions relevant to electron-
phonon scattering in silicon: near the Brillouin zone center
for intra-valley acoustic phonons, and near the frequencies
corresponding to inter-valley f- and g-type phonons. The
quadratics are also easy to invert and, where needed, to extract
the phonon wave vector as a function of its frequency.

The total intra-valley scattering rate is calculated separately
with LA and TA phonons, as a function of the initial electron
energy Ek:

Γ(Ek) =
D2

am∗

4πρh̄2k

∫

q

1
ωq

(
Nq +

1
2

∓ 1
2

)
I2

q q3dq (2)

where Da is the respective deformation potential (LA or TA),
m∗ the electron density of states effective mass, ρ the mass
density of silicon, k the electron wave vector in the spherical
Herring-Vogt transformation [11], Nq = 1/(exp(h̄ωq/kbT )−
1) the phonon Bose-Einstein occupation number, and Iq the
wave function overlap integral in the rigid ion approxima-
tion [12]. All quantities are numerically evaluated using the
phonon dispersion from Eq. 1. The scattering rate integral is
carried out over all phonon q that conserve both energy and
momentum, as required by | cos(φ)| ≤ 1, where

cos(φ) = ∓ q

2k
+

m∗ωq

h̄kq
[1 + α(2Ek ± h̄ωq)] (3)

and φ is the angle between the phonon and initial electron
wave vector. As in Eq. 2, the top and bottom signs refer
to phonon absorption and emission, respectively. The intra-
valley scattering rate typically cited in the literature [3] can
be recovered by substituting ωq = vsq and Iq = 1.

The LA and TA deformation potentials introduced in [11]
as DLA(θ) = Ξd + Ξu cos2 θ and DTA(θ) = Ξu sin θ cos θ
are isotropically averaged over all angles θ between the
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Fig. 4. Energy relaxation rates with optical and acoustic phonons as a
function of applied steady-state electric field.

phonon wave vector and the longitudinal axis of the conduc-
tion band valley. The values of the shear (Ξu) and dilation
(Ξd) deformation potentials are chosen to match the low-
field mobility data [13] at low temperatures (77 K), where
acoustic scattering dominates. The angle-averaged LA and TA
deformation potentials are found to be 6.4 eV and 3.1 eV
respectively. To the best of our knowledge this is the first
analytic-band MC work to distinguish between and include
the dispersion of the two acoustic phonon polarizations. This
becomes particularly relevant toward the edge of the Brillouin
zone where transverse phonons are nearly stationary.

The phonon dispersion is also employed for inter-valley
transitions involving the six f- and g-type acoustic and optical
phonons (see Fig. 2). After the type of inter-valley scattering
mechanism is determined, the final state of the electron is first
chosen isotropically [3] and the phonon wave vector necessary
for the transition can be calculated because the initial state
of the electron is known. This is translated into a certain
phonon energy using the phonon dispersion described above.
The phonons that do not satisfy both energy and momentum
conservation within a certain tolerance are discarded with a
rejection algorithm. This is a relatively inexpensive search
which ends when a suitable phonon is found.

The code implements all phonon scattering events as inelas-
tic (whereas most traditional analytic-band, and even some
full-band codes, often neglect energy relaxation with the
acoustic modes) and electrons can exchange energy with
phonons in arbitrarily small quantities. During the simulation
all phonons absorbed and emitted are tallied, and full phonon
generation statistics can be computed.

III. APPLICATIONS

Fig. 3 shows the total computed phonon scattering statistics
(for both intra- and inter-valley scattering) in a steady state
field of 40 kV/cm. Note the cutoff energy of the various
phonon branches as required by their respective dispersion
relation from Fig. 2. Few acoustic phonons are generated at the
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Fig. 5. Heat generation profile along the channel of a possible 10 nm
transistor. The dashed line represents the heating rate obtained from the dot
product of the electric field and the current, the solid line is the heating profile
obtained with our MC simulations. The source and drain are to the left and
right, respectively, of the vertical dotted lines.

lowest energies because their density of states vanishes near
the Brillouin zone center. Intra-valley scattering also decreases
at higher energies as fewer electrons with large enough energy
and/or momentum are available to interact with those phonons.
The sharp peaks occur due to strong Umklapp inter-valley
scattering with phonons of q = 0.3qmax (g-type) and those
near the edge of the Brillouin zone (f-type) as referred to in
Fig. 2 and [6]. The relative magnitude of the peaks depends
on the choice of inter-valley deformation potentials. This work
uses those from [3], which are the ones most often cited in
the literature, although they are not unique [13].

Fig. 4 compares the net (emission minus absorption) acous-
tic and optical phonon generation rates for various steady-state
electric fields. Inter-valley optical phonon emission dominates
at all but the lowest fields, where the average electrons are
not yet hot enough to generate optical phonons, whose cut-off
energy is near 50 meV.

The simulation can also be run in the context of a real
electronic device, by importing a 1- or 2-dimensional electric
field grid from another device simulator. The detailed phonon
generation rates (in both real and momentum space) are then
computed with MC runs in this “frozen-field” approximation
and information can be extracted to aid in the thermal design
of future generations of nanotransistors. This is particularly
important in the sub-continuum limit, i.e. at dimensions com-
parable to or less than the electron and phonon mean free path
(on the order of 5 and 100 nm in silicon devices, respectively).
Fig. 5 shows the simulated heat generation profile in the 10 nm
device proposed by [14] using a voltage Vdd = 0.6 V. The
discrepancy between the macroscopic (J · E) and MC heat
generation profile is clear at such small scales. Electrons are
injected almost ballistically across the short channel and begin
releasing their energy to the lattice just inside the drain. The
peak heating rate predicted by MC occurs a few nanometers
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into the drain, downstream from the macroscopic prediction,
as electrons travel a few more mean free paths beyond the
peak electric field. The shape of the MC heating rate is also
different: electrons lose energy more gradually (about 50-
60 meV, or one optical phonon per scattering length) than
the classical prediction, where the electric field drops to zero
inside the highly doped drain. The MC heat generation model
is essential for predicting the mixture of electrons and phonons
inside the drain “hot spot,” which can be used as an input to a
phonon Boltzmann Transport Equation (BTE) solver. Ballistic
phonon emission from the drain hot spot may affect the source-
side electron injection [15] and therefore limit the ultimate
current drive of such short devices.

IV. CONCLUSIONS

This work represents a simulation approach which fills the
gap of engineering tools between simple analytic-band MC
codes [3] and more complex full-band simulators [4], [5].
The emphasis is on sophisticated physical modeling within
a computationally efficient framework. The use of analytical
electron bands and phonon dispersion enables simulations
which are orders of magnitude faster than full-band tech-
niques, and very accessible on modern desktop computers.
This method has direct applications to the engineering of nano-
devices and materials that require detailed knowledge of the
heat generation spectrum.

Ongoing work is exploring the extension of these simula-
tions to confined (and quantized) 2-dimensional electron and
phonon systems (e.g. ultra-thin films) and to coupled electro-
thermal simulations that feed the generated phonon densities
back into the electron MC calculation. The information, doc-
umentation, and source code will be shared online [16].
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