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Abstract— Floating regions in general-purpose electromagnetic
field solvers are included by equation expansion, thereby convert-
ing a singular matrix into a regular square matrix.

I. INTRODUCTION

Floating regions in device simulation are a potential source
of convergence problems due to the singular character of the
matrices that need to be inverted during the iteration towards
the solution in the Newton-Raphson method. Floating regions
typically occur if there exist domains where charge can get
trapped. Such domains can be n-type regions surrounded by
p-type domains, p-type regions surrounded by n-type domains,
n- or p-type regions surrounded by insulators and variations
thereof. Physically, the origin of the singular nature of the
Newton-Raphson matrix is quite obvious: if the value of the
trapped charge is not taken into account, as is often the
case, then the solution is not unique (a different value of the
total trapped charge gives rise to a different potential level).
The mathematical problem is ill-posed and the result is a
numerical problem that gives rise to convergence problems
such as norm oscillations [1]. Several work-around methods
have been suggested in the past. One option is to exploit
transient simulations, thereby carefully controlling the amount
of trapped charge. Another solution has been to introduce
an artificial contact to the floating region and together with
the constraint that no current is flowing into this contact.
Finally, one can exploit the recombination-generation term in
the drift-diffusion equations and elevate the isolating status of
the floating region. Whereas, the latter option is feasible for
floating regions that are only shielded from the contacts by pn
junctions, e.g. SOI devices, such a work-around is not possible
if the floating region is truly insulated. This is the case if the
region is fully surrounded by insulators. Furthermore, if the
floating region is metal surrounded by insulating materials, e.g.
floating gates or dummy structures in the interconnect layout,
then such an approach is not possible and alternative solutions
must be found. Here, we will present such an alternative
method that explicitly takes into account the trapped charge
in the floating domain. We will concentrate here on floating
metallic regions.

Recently, we introduced a method for solving electromag-
netic field problems by including an additional scalar ghost
field that needs to be obtained as part of the solution method.

The solution for this additional field does not carry energy and
can be viewed as being a mathematical aid that allows for the
construction of a gauge-fixed, regular matrix representation of
the curl-curl operator acting on edge elements [2], [3], [4],
[5].

Instead of the curl-curl operator combined with the gauge
condition

Mold =
[

∇ × ∇×
∇·

]
, (1)

leading to a sparse, well-posed, but non-square matrix Mold
that acts only on the vector field A, the operator

Mnew =
[

∇ × ∇× γ ∇
∇· ∇2

]
, (2)

is considered that acts on the pair of variables A and a ghost
field χ, according to

Mnew �

[
A
χ

]
= µ

[
J − ε ∂

∂tE
0

]
. (3)

This operator leads to matrices Mnew that are sparse, regu-
lar, square and semi-definite. Implicitly, we made an important
conceptual step : by adding additional degrees of freedom,
e.g. the ghost-field variables χ, we turned a numerically
unattractive problem into an easy one: although the starting
problem was well-defined it is problematic due to the fact
that the matrices that need to be solved are not square. The
extra degrees of freedom transformed the problem into one
which generates well-defined and square matrices. Having
noted this message, we will deal with the floating regions in
a similar way : the inclusion of additional degrees of freedom
will assist in turning an unsolvable (singular) problem into
a solvable (regular) problem. In particular, we will address
a long standing problem of dealing with floating domains in
general-purpose electromagnetic field solvers.

II. PROBLEM DESCRIPTION

In general-purpose electromagnetic field solvers the consti-
tutive laws for the current densities are used in such a way that
they reflect the material properties of the underlying domain.
In particular, for metals Ohm’s law is used in the form

J = σE = −σ∇V , (4)
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Fig. 1. Grid of a one-dimensional structure of a metallic region squeezed
between two insulating regions.

together with the continuity equation :

∇ · J = 0 . (5)

In insulating regions the Poisson equation

−∇(ε∇V ) = ρ (6)

is solved. Continuity at the interfaces between metallic and
insulating regions should be guaranteed. A finite-element
implementation of both equations for the several domains
automatically takes the continuity into account, but ignores
the fact that no currents flow in the floating regions, since the
finite-element method as well as the box-integration method
refer to the balance of the current flow in the metallic nodes.
Since the metal-insulator nodes do participate in the current
balance, the latter ones are dealt with according to their
metallic nature. All this works fine as long as the metal is
not floating. However, for floating regions, this implementation
leads to solutions that describe constant currents in the metallic
regions, thereby respecting the balance in the metal nodes but
at the same time putting arbitrary values of the potential on
the interface nodes.

In order to illustrate above remarks we consider a simple
one-dimensional static problem that is described with a grid
of seven nodes. However, the idea can be equally applied to
bigger problems at higher frequencies. A metallic domain is
squeezed between two insulating regions as is illustrated in
Fig. 1. There are five variables (V2, V3, V4, V5, V6) for which
the finite-element equations read :





−2ε ε 0 0 0
0 σ −σ 0 0
0 −σ 2σ −σ 0
0 0 σ −σ 0
0 0 0 ε −2ε




�





V2
V3
V4
V5
V6




=





−εV1
0
0
0

−εV7





(7)

It can be easily checked that the determinant of the matrix
in (7) is zero. A basis for the null space is given by the
vector v0 = (1/2, 1, 1, 1, 1/2). Therefore, any vector that
obeys equation (7) can be displaced by an arbitrary amount
proportional to v0. For such a small system one can easily
recognize the singularity of the matrix, however this is not
longer the case for real world problems. For such problems,
the matrix is huge and also the linear system can be solved to
get a solution. With this treatment of the floating areas their
potential value is undefined, and can become whatever value
due to the ill-posedness of the problem and the singularity of
the corresponding matrix.

Thus we find that the cause of the arbitrariness is the
ill-posed formulation of above assignment of the various

equations for the Poisson potential. For the potentials at the
nodes, the discretized problem reads

Mfloat � [V] = [b] , (8)

where V is the column vector of the Poisson potential at the
internal nodes and b describes the coupling to the contacts.
Mfloat is a singular matrix.
In the spirit of the ghosts, we will now transform this problem
into a regular one by extending the size. In other words, we
will construct a regular matrix and a larger vector for the
unknown variables such that the floating region problem is
described by the following equation :

[
M P
Q N

]
�

[
x
y

]
=

[
b
0

]
, (9)

where P,Q and N are extra entries for making the complete
matrix non-singular and keeping it square at the same instant.

III. PROPOSED SOLUTION

In order to construct the extended matrix system we will use
the fact that the total charge on each floating region is fixed.
Moreover, since no current can flow in the floating regions,
each region has a fixed value of the potential, Vfl. These two
facts suffice to perform the construction. From Gauss’ law
we find that for the k-th floating region, we must add to the
evaluation of the Poisson equation at the insulator side of the
interface, a charge term

ρi =
∑

ε∆Ai

(
V k

fl − Vi

)
, (10)

where the sum runs over all nodes in the insulating region that
couple to the k-th floating region and ∆Ai is the interface area
assigned to the i-th node. The variable V k

fl can be added to
the vector y, thereby extending the set of unknowns. At the
same time we obtain the entries for the matrix part P , since
they follow from the Newton-Raphson derivatives ∂ρ/∂V k

fl .
The additional equations follow from setting the total charge
that is trapped on each floating region : all that needs to be
done is to sum the charge density that is stored at each node of
the surface of the k-th floating region. Therefore, each floating
region generates one additional equation. The sums determine
the matrix parts Q and N . Finally, we note that the node
equations for the Poisson potentials at the interfaces are simply

Vint,i − V k
fl = 0 . (11)

Using the simple example of Fig. 1, we arrive at the following
non-singular matrix problem :




−2ε ε 0 0 0 0
0 1 0 0 0 −1
0 −σ 2σ −σ 0 0
0 0 0 1 0 −1
0 0 0 ε −2ε 0

−1 0 0 0 −1 2




�





V2
V3
V4
V5
V6
V 1

fl




=





−εV1
0
0
0

−εV7
Q1

/
ε





(12)
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IV. EXAMPLE

A. Example 1

We have inserted above ideas in a general-purpose electro-
magnetic field solver. In Fig. 2, a structure is depicted with two
floating metallic regions and an applied bias of two Volts from
the bottom contact to the top contact. In Fig. 3, the potential
along a cut line from the bottom contact to the top contact is
shown that is obtained by solving the problem according to
above described method. Note that the potential in the metal
regions is flat (equipotential) and that the level is between the
values of the applied biases (no charge was put on the floating
regions).
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Fig. 2. Two floating metallic regions embedded into an insulating volume
and two contacts.

B. Example 2: A transformer system

To show that the method also works on a more complex
application, we examined the system shown in Figure 4.

A three-ring transformer system has been analyzed. Three
metal rings in the horizontal plane, containing each two ports
(or contacts) are connected by two metal floating regions (rings
in the vertical plane). Although we restrict the analysis to the
static case, also the high-frequent analysis can be carried out
with the same method as will be shown later. The transformer
is embedded in a dielectric.

All the ports of the rings have zero-voltage boundary
conditions for the electric potential, except for one of port
of one ring (Figure 5). The rings with zero-voltage boundary
conditions are equipotential volumes at zero Volt as expected.
The floating areas in between are also equipotential volumes.
Their potential value is fixed by the extra condition (10).

One of the advantages of this technique is the treatment of
trapped charges. Indeed in equation (12), the variable Qi pops
up. This charge stands for the trapped charge on the floating

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

Poisson potential

height

V

Fig. 3. The Poisson potential along a line from the bottom to the top contact.

Fig. 4. A 3D view of the geometry of a ring transformer used to show the
validity of the method.

region i. The influence of the trapped charge on the solution
of the Poisson problem, can be studied very easily using this
technique. Additional positive (negative) charge will increase
(decrease) the floating potentials.

V. INITIAL GUESS

In realistic simulations the additional equation for each
floating region involves the nodes of surface of the floating
domain. Although this number of nodes is an order of magni-
tude less than the total number of nodes, it represents still a
considerable amount of non-local coupling. As a consequence
the matrix inversion (in practice: the iterative solving proce-
dure) is hampered by such a degree of non-locality.

Moreover, the new matrix (12) is not symmetric and the
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Fig. 5. The electric potential along the line AA’ in the cross-section. The
applied potentials on the ports are also shown.

conjugate gradient method for symmetric systems, that exist
for solving this kind of systems fails.

In order to improve the iterative solution scheme, a good
initial guess will usually substantially reduce the calculation
time. For floating regions, one may obtain a good initial
guess by realizing that the Poisson potential is constant in
each floating domain. A neglegible gradient of the Poisson
potential can also be obtained by treating the metal as a high-
K dielectric material, since the large permittivity will force the
electric field to become small. Therefore, as an initial guess
this approach will lead to almost flat Poisson potentials in
the floating domains. The cusp in the potential at the interface
nodes is fully determined by the the ratios of the permittivities
and therefore in general this initial guess work fine, if the total
charge on the floating domain vanishes.

VI. HIGH-FREQUENCY PROBLEMS

The present method is robust and also gives a detailed
insight in how to handle time-dependent problems. In the latter

case, one finds that floating regions do carry currents due
to inductance effects. These currents are fully displacement
currents. It suffices to realize that the electric field is obtained
as

E = −∇V − ∂A
∂t

(13)

The first term corresponds to a conservative field and can
therefore be dealt with as before in floating domains. In
other words, we have that E = EC + ENC, where the first
term is the conservative contribution arising from the scalar
potential and the second term is the electric field arising
from inductive effects which is in general non-conservative.
In floating regions we can put EC = 0, therefore the electric
field is fully inductive.

We can also argure that with the choice of the Coulomb
gauge, the poisson eqation for the electric potential remains
the same for the static and the dynamic treatment. This means
that also Gauss’ law must hold for the dynamic regime, and
that we can write down (10) in the dynamic regime.

VII. CONCLUSIONS

We presented a new method for solving floating domain
problems. The method is based on treating each floating
region potential as an additional unknown variable that can
be determined from demanding that the total charge on the
floating region has a prescribed value.
The novelty of the method consists in the way of handling
the metallic nodes inside the floating region: their degrees of
freedom are not eliminated in favor of the floating potential.
In stead, the degrees of freedom corresponding to the floating
regions, are treated according to the local Ohm’s law as is
done for non-floating metallic domains.
Results on test problems correspond with the expected values.
If trapped charge is introduced, the corresponding floating
region potential is shifted.
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