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Abstract—Zero-flux boundary condition is revisited in the context 
of a two-probability-parameter and a rigorous combinatorial 
model. The two-parameter model distinguishes partial 
segregation, partial absorption, and partial reflection.  Both 
models show that vanishing flux across the barrier can be 
realized for non-zero gradient of the dopant distribution at the 
boundary. 
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I.  INTRODUCTION 
With the advent of nano-scale dimensions for dielectric, 

metal gate and semiconductor films precise knowledge of 
impurity, contaminants, and point defect distribution have 
become crucial in understanding the properties of thin and 
subsurface layers. The zero-flux boundary condition [1] is 
revisited in the context of a rigorous random walk barrier 
model proposed by Feller [2]. It is shown that in the more 
general model the zero-flux boundary condition has by no 
means to be associated with the vanishing gradient of the 
diffusing species. A special case of a totally reflective barrier 
leads to a strong dopant depletion at the interface.  

II. FELLER’S MODEL 
According to Feller an elastic barrier, situated at the 

location on the x axis halfway between the positions m=0 and 
m=-1, is defined by the rule that from position m=0 the particle 
moves with the probability p to position m=1; with probability 
δq it stays at m=0; and with probability (1-δ)q it moves to   
m=-1 where it is absorbed (i.e., the process terminates), with 
p+q=1, see Fig.1.  
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Fig.1 Two-probability parameter model of a diffusion barrier. 

For δ=0 we have an absorbing barrier, for δ=1 a reflecting 
barrier. Both, the absorbing and reflecting barrier are special 
cases of the elastic barriers. As δ runs from 0 to 1, a whole 
family of partially reflective and partially absorbing barriers is 
generated. The case δ=1 and p=0 corresponds to a totally 
segregating barrier, which has the same properties as a totally 
absorbing barrier, however now shifted by one unit lattice 
distance to the right. The cases for δ=1 and 0<p<1 can be 
called partially reflecting barriers. The model comprehends 
intermediate cases of co-existence of partial segregation, partial 
absorption, and partial reflection as shown in Table I. 

δδδδ
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δδδδ=0

0<δδδδ <1

δδδδ=1
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partially absorbing
partially segregating
partially reflecting

partially absorbing
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non-absorbing
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non-absorbing
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totally reflecting
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totally segregating

δδδδ
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δδδδ=0

0<δδδδ <1

δδδδ=1

totally  absorbing totally  absorbing totally absorbing

partially absorbing
partially segregating

partially absorbing
partially segregating
partially reflecting

partially absorbing
non-segregating
partially reflecting

non-absorbing
non-segregating
totally reflecting

non-absorbing
partially segregating
totally reflecting

non-absorbing
totally segregating

Table I. Depending on the choice of δ and p probability parameters one can 
have various degrees of absorptivity, segregation, and reflectivity. 

This paper focuses specifically on the case δ=1 of a non-
absorptive barrier (zero-flux across the barrier) and investigates 
the impact of the probability parameter p on the distribution of 
diffusing species. Fig.2 shows that only the choice of p=1/2 
leaves a uniform species distribution invariant and compatible 
with the zero-flux boundary condition used in partial  

-1 0 2 3 4 5 6 m

Co(m) 1 1 1 1 1 1 .

C1(m) 1 1 1 1 1 1 .

½  ½   ½   ½    ½  ½   ½   ½   ½   ½   ½  ½    ½ 

-1 0 2 3 4 5 6 m

Co(m) 1 1 1 1 1 1 .

C1(m) 1 1 1 1 1 1 .

½  ½   ½   ½    ½  ½   ½   ½   ½   ½   ½  ½    ½ 

 
Fig.2 A uniform distribution is invariant under the random walk in presence of 
partially reflecting barrier with the properties d=1 and p=1/2 (first two arrows at 
m=0 position). All other choices of p lead to a non-uniform distribution while 
conforming to the zero-flux condition. 
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differential equations theory. All other choices of not vanishing 
p lead either to accumulation (p>1/2) or to depletion (p<1/2) of 
the diffusing species at the barrier, while still preserving the 
zero-flux boundary condition. For the special case of p=1 an 
analytical combinatorial formula is derived, for the first time, 
showing strong dopant depletion at the interface which 
increases with increasing number of diffusion steps.  In the 
case of vacancies, the depletion at the interface lowers the 
number of distinguishable ways of distributing vacancies 
among lattice sites, reducing thus the configurational entropy at 
the interface. The lowering of Gibbs energy at the interface is 
therefore less pronounced at the interface than in the bulk by 
virtue of the spatially non-uniform vacancy distribution. 

III. COMBINATORIAL MODEL  OF A TOTALLY REFLECTING 
BARRIER 

In the unrestricted one-dimension case, the 
probability that particle arrives at the point m after N unit 
displacements is well-known and given by the number of 
paths arriving at m divided by the total number of paths, i.e. 
W(m,N)= C(N, 2

1 (N+m))/2N, where C(n,m) is the binomial 
coefficient. In case of a diffusion barrier at m=0, particle 
diffusion is restricted to the positive axis. The conventional 
treatment postulates for this case the reflection principle [3], 
which leads indeed to a probability formula predicting uniform 
dopant distribution at the boundary. If we assume that a barrier 
is at mb, the argument is made that any path which in absence 
of the barrier would have ended at m*<mb is merely reflected 
at the plane m=mb. Thus the image point of m* lies on the 
other side of the barrier at 2mb-m*. [3]. It is then concluded 
that the effect of the reflecting barrier is taken into account by 
adding to W(m,N) the reflected probability W(2mb-m,N). Thus 
the resultant probability is:  W(m,N;mb)=W(m,N)+W(2mb-
m,N). It can then be shown [3, 4] that in the limit of large N:  
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This condition is reproduced by the choice p=1/2 in the case of 
the rigorous two-probability-parameter model shown in Fig.1.  
The case of totally reflective barrier can be also considered 
within a rigorous combinatorial model. As an example, 
consider all paths for N=4 for a particle starting its random 
walk at m=0 at the barrier. In presence of the barrier, the 
allowed and disallowed paths are summarized in Table II. (+) 
denotes a step to the right and (-) a step to the left. Obviously, 
the first step allowed is only (+). The number of allowed paths 
is 6. All other paths such as (+--+) have to be excluded. The 
total number of excluded paths is 10.  Thus the probabilities to 
find the particle at m=0,2,4 is Wo(0,4)=1/3 ,Wo(2,4)=3/6=1/2 
,Wo(4,4)=1/6, respectively. The same probabilities given by 
the textbook formula given according to the formula for 
W(m,N,mb) are: W(0,4;0)=2W(0,4)=3/4, W(2,4;0)=1/2, 
W(4,4;0)=1/8 respectively, which, besides not being properly 
normalized at the origin (double counting of paths), give 
clearly a markedly different probability distribution. 
 

For the general case, a convenient bookkeeping scheme to 
keep track of all allowed paths originating from and arriving at 
arbitrary location can be found considering a "truncated" 
Pascal's triangle shown in Fig.3.  Fig.3 shows the evolution of 
the path tree for a particle staring random walk at m=0. 
Similar truncated Pascal’s triangles can be constructed for 
particles departing from arbitrary locations. 
 
 

Allowed Paths Paths excluded by the barrier 
(+ + + +) 
(+ + + -) 
(+ + - +) 
(+ + - -) 
(+ - + +) 
(+ - + -) 
 

(- - - -)   (- + + -) 
(- - - +)   (- + + +) 
(- - + -)   (+ - - -) 
(- - + +)   (+ - - +) 
(- + - -) 
(- + - +) 
 

Table II. Allowed and disallowed random walk paths for N=4 steps starting at 
(just right of) the reflecting barrier. 
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Fig.3. The truncated Pascal’s triangle is designed to count number of paths at a 
particular location for a particle starting its random walk at m the barrier (m=0) 
and proceeding through the first 12 diffusion steps. 

 
The coefficients a(2M,2k) of the truncated Pascal’s triangle as 
shown in Fig.3 conform to a recurrence relation given by : 
 
a(2M,2M)=1, a(2M, 2(M-1))=N-1, a(0,0)=1, and a(2,0)=1 
a(2M,0)=a(2(M-1),0)+a(2(M-1),2k)        for  all  M>1 
a(2M,2k)=a(2(M-1),2(k-1))+2a(2(M-1),2k)+a(2(M-1),2(k+1)) 
for     all k=1,…,M-1   
 
Using generating function techniques [5] the solution of the 
above recurrence relation is given by: 

 
Using mathematical induction, the above recurrence relation 
and its solution (eq.(1)), it can be shown that the total number 
of paths for N steps in a presence of a barrier is given by: 
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Thus, the total number of paths for a particle starting its 
random walk at the barrier is just the number of paths 
returning to the origin in the case of an unrestricted random 
walk. For particle starting from m=0 the probability Wo(k,N) to 
find it after N=2M steps is given by: 

 
 In particular, the probability to find a particle at the barrier 
after N steps is Wo(0, N=2M)=1/(M+1), indicating that the 
sub-barrier region is progressively depleted with the 
increasing number of steps. An example of the distribution of 
a particle starting at the barrier after 12 steps is shown in 
Fig.4. It can be seen that the peak is shifted deeper into the 
semi-infinite medium with increasing number of steps. For a 
large number of steps the particle assumes uniform 
distribution in the bulk exhibiting pronounced depletion at the 
interface.   
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Fig.4. Probability distribution after 12 diffusion steps of a particle starting its 
random walk next to the totally reflecting barrier. 

 

It is of interest to see how the location of the peak is evolving 
with the number of diffusion steps.  To determine the location 
of mmax of the maximum of the probability distribution the 
difference derivative is calculated and set zero 
( 02/)( 2

2
)1(2

2 =−+ k
M

k
m aa ). The solution of this equation is 

mmax=2kmax= NN 22)1(2 →−−  for large N.  Hence, 
it can be seen that the peak is shifting rapidly into the semi-
infinite medium with increasing number of diffusion steps. 
 
The general solution of the random walk for a particle 
departing from any lattice site m=2j near the barrier is given 

by the following equation (number of arrivals at m=2k after 
departing from m=2j): 
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 This particular relation, in a different context, has been 
derived by Rosenblatt [6], however, without the proper 
normalization, see eq. (7). The total number of paths for every 
path tree originating from m=2j after N=2M steps is 
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eq.(5)  
The probability of particle arriving at m=2k  after having 
started its journey at m=2j is given by 
  
 W2j(2M, 2k) = a(2M, 2k, 2j) / Atot(2M, 2j) eq.(6) 
 
The eq. (7) is the general solution of the diffusion of arbitrary 
initial distribution co(2j) with the zero-flux condition for the 
case of totally reflecting barrier. 
 

 cN(2k) = ∑
+

=

kM

j

2

0

[W2j(2M, 2k) co(2j)] eq.(7) 

The evolution of an initially uniform distribution  co(i)=1 for 
all integer i after N=12 steps is shown in Fig.5. A pronounced 
depletion of the surface region can be observed followed by a 
hump exceeding the uniform concentration before the 
distribution tails off into the uniform background. The 
formation of the hump (up-hill diffusion) is a consequence of 
the  subsurface depletion and conservation of the dose.  
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Fig.5 Concentration distribution after 12 steps of an initially uniform 
distribution co(2j)=1 for all j in presence of a totally reflecting barrier. 
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The barrier exerts a non-local impact on the diffusion profile.  
The distribution affected by the barrier extends as far as 
m=2(M-1).  In case of Fig.5, the furthest position from the 
barrier that is affected by the barrier is position m=22 and not 
m=12. A particle starting at m=10 can reach the location m=22 
by only one path, consisting of a 12-tuple of exclusively 
forward steps (+)12. It has also a chance of reaching the barrier 
at the 10-th step as it marches back by a 10-tuple of backward 
steps (-)10. Hence, the total number of allowed paths is reduced 
from 212 to 22)22( 12

12 −=totA . Therefore, the probability to 
arrive at m=22 increases in the presence of the totally 
reflecting barrier from 1/(212) to 1/(212-2). This is so, since the 
probability is not only determined by the number of arrivals at 
a particular location, but also by the total number of possible 
paths. Accordingly, given sufficiently large number of trials, 
one would observe more particles at the far end forward 
location in the presence of the barrier than in its absence, 
although the particles had never the chance to encounter the 
barrier in its path. 
        
Returning to the Feller’s model, it should be mentioned that 
the case p=0 leads to a total segregation at the interface. It is 
easy to see that for ½<p<1 the dopant distribution will exhibit 
depletion at the interface, whereas for 0<p< ½ an 
accumulation near the interface, see Fig.2.  

Fig. 6 Probability distribution of dopants in a thin film bounded by two totally 
reflective barriers. The two barriers interact and arrest the depletion at the 
interfaces observed in the semi-infinite plane. 
 

 
This finding points to a serious limitation of the zero-flux 
boundary condition employed in PDE and stresses the need of 
better understanding of the properties of physical interfaces in 
terms of the parameter p.  
 
In the case of thin layers bounded by two boundaries (as 
shown in Fig.6) the depletion at either barrier is brought to a 
halt by the presence of the other barrier at some point in time, 
determined by the thickness of the film, resulting in a 
stationary solution with a maximum probability distribution at 
the center of the film and decreasing concentration at the 
boundaries.  
 

CONCLUSION 
It has 

 It has been shown that a more detailed model of a 
reflective diffusion barrier admits a whole range of 
concentration gradients while still being fully compatible with 
the zero-flux boundary condition. The differential equation 
theory postulates that the zero-flux boundary condition can be 
only realized for a vanishing gradient of the diffusing species 
at the barrier. In the two-parameter-probability model this 
corresponds to the particular case of δ=1 and p=1/2. The zero-
gradient boundary condition designed to ensure the zero-flux 
condition appears therefore unduly restrictive. The present 
investigation indicates that a barrier, treated in the rigorous 
path counting model, gives rise to a driving force that is non-
local in nature. The case of δ=1 and p=1 as well as the 
rigorous path counting method lead to a strong depletion of the 
subsurface region. In the case of thin films this depletion is 
arrested by the mutual interaction of both boundaries. 
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