
Recent advances in sparse linear solver technology
for semiconductor device simulation matrices

(Invited Paper)

Olaf Schenk and Michael Hagemann
Department of Computer Science

University of Basel
Basel, Switzerland

Email: {olaf.schenk|michael.hagemann}@unibas.ch

Stefan Röllin
Integrated Systems Laboratory

Swiss Federal Institute of Technology
Zurich, Switzerland

Email: roellin@iis.ee.ethz.ch

Abstract— This paper discusses recent advances in the devel-
opment of robust direct and iterative sparse linear solvers for
general unsymmetric linear systems of equations. The primary
focus is on robust methods for semiconductor device simulations
matrices, but all methods presented are solely based on the struc-
ture of the matrices and can be applied to other application areas
e.g. circuit simulation. Reliability, a low memory-footprint, and a
short solution time are important demands for the linear solver.
Currently, no black-box solver exists that can satisfy all criteria.
The linear systems from semiconductor device simulations can be
highly ill-conditioned and therefore quite challenging for direct
and preconditioned iterative solver. In this paper, it is shown
that nonsymmetric permutations and scalings aimed at placing
large entries on the diagonal greatly enhance the reliability of
direct and iterative methods. The numerical experiments indicate
that the overall solution strategy is both reliable and very cost
effective. The paper also compares the performance of some
common software packages for solving general sparse systems.

I. INTRODUCTION

In semiconductor device simulation a system of three cou-
pled nonlinear partial differential equations has to be solved.
The discretization and linearization of these equations leads
to large general sparse unsymmetric linear systems, which
are highly ill-conditioned and thus quite challenging to solve.
There are two main approaches to solving these unsymmetric
sparse linear systems. The first approach is more conservative
and uses sparse direct solver technology. In the last few years
algorithmic improvements [1], [2], [3] alone have reduced the
time for the direct solution of unsymmetric sparse systems of
linear equations by almost one or two orders of magnitude.
Remarkable progress has been made in the increase of relia-
bility and parallelization, and consistent high performance is
now achieved for a wide range of computing architectures.
As a result, a number of sparse direct solver packages for
solving such systems are available [2], [4], [5], [6] and it is
now common to solve these unsymmetric sparse linear systems
of equations which might have been considered impractically
large to solve with a direct method until recently.

This work was supported by the Swiss Commission of Technology and
Innovation under contract number 5648.1, and the Strategic Excellence
Projects (SEP) on Computational Science and Engineering of the Swiss
Federal Institute of Technology Zurich.

Nevertheless, in large three-dimensional simulations with
more than 100K grid nodes, the memory requirements of direct
methods as well as the time for the factorization may be too
high. Therefore, a second approach, namely, preconditioned
Krylov subspace methods, is often employed to solve these
systems. This iterative approach has smaller memory require-
ments and often smaller CPU time requirements than a direct
method. However, an iterative method may not converge to
the solution in some cases where a direct method is capable
of finding the solution.

A good preconditioner is mandatory to achieve satisfactory
convergence rates with Krylov subspace methods. It is well
known that iterative methods combined with simple precondi-
tioning techniques like ILU(0) work well when the coefficient
matrix is, at least to some degree, diagonally dominant or well
conditioned. In contrast, when the coefficient matrix has zeros
on the diagonal or is highly unsymmetric, the preconditioners
are often unstable and iterative methods may fail. Furthermore,
preconditioned Krylov subspace methods rarely converge well
when the off-diagonal values of the coefficient matrix are an
order of magnitude larger than the diagonal entries. This is
often the case in semiconductor device simulation simulations.

In [3] Duff and Koster introduce new permutation and
scaling strategies for Gaussian elimination to avoid extensive
pivoting strategies. The goal is to transform the coefficient
matrix A with diagonal scaling matrices Dr and Dc and
a permutation matrix Pr in order to obtain an equivalent
system with a matrix PrDrADc that is better scaled and
more diagonally dominant. This preprocessing has a beneficial
impact for both direct and iterative methods. The accuracy of
direct solvers is improved and the need for partial pivoting
is reduced, thereby speeding up the factorization process.
Since the diagonal elements become large relative to the
off-diagonal elements, it is intuitively clear, that diagonal
preconditioners or incomplete LU-factorizations will benefit
from these nonsymmetric permutations and scalings and thus
are able to accelerate preconditioned iterative methods.

The paper is organized as follows. In Section 2, an overview
of nonsymmetric matrix permutations and scalings is given.
Section 3 briefly reviews current sparse direct solvers and
iterative Krylov subspace methods that are routinely used

0-7803-7826-1/03/$17.00 © 2003 IEEE- 103 -

in large semiconductor device simulations. In Section 4,
the matrices for the numerical experiments are described. A
comparison of different direct methods and the influence of
the nonsymmetric orderings and scalings applied to iterative
methods are presented in Section 5. Finally, in Section 6, the
conclusions are presented.

II. NONSYMMETRIC PERMUTATIONS AND SCALINGS

This section gives an introduction to the known techniques
to find nonsymmetric permutations, which try to maximize
the elements on the diagonal of the matrix. For a deeper
understanding, we refer the reader to the original paper of
Duff and Koster [3].

Matrices with zeros on the diagonal can cause problems for
both direct and iterative methods (for the latter the creation
of the preconditioner can fail). In some fields like chemical
engineering or circuit simulation a lot of zeros happen to
be on the diagonal. The matrices originating from device
simulation usually, but not always, have zero free diagonals.
A remedy is to permute the rows of the matrix, such that
only nonzero elements remain on the diagonal. By finding
a perfect matching in a bipartite graph corresponding to the
matrix structure, a permutation with the desired properties is
defined.

A drawback of the above strategy is, that only the structure
of the matrix is taken into account, which can lead to small
values on the diagonal. Therefore, other approaches try to
maximize the diagonal values in some sense. In the bottleneck
transversal, the goal is to permute the rows of the given matrix,
such that the smallest element of the diagonal is maximal. This
nonsymmetric permutation can be found in two different ways.
Both methods do not generate unique permutations and are
sensitive to a prior scaling of the matrix. A major drawback
is that only the smallest values on the diagonal are regarded,
which was already reported in [7].

Instead of maximizing only the smallest value on the
diagonal, the sum of all diagonal elements can be maximized.
In other words, we look for a permutation σ, which maximizes
the sum

n∑

i=1

|aσ(i)i|. (1)

This problem is known as (linear sum) assignment problem
or bipartite weighted matching problem in combinatorial op-
timization. The problem is solved by a sparse variant of
the Kuhn-Munkres algorithm. The complexity is O(n3) for
full n × n matrices and O(nτ log n) for sparse matrices
with τ entries. For matrices, whose associated graphs fulfill
special requirements, this bound can be reduced further to
O(nα(τ + n log n) with α < 1. All graphs arising from
finite-difference or finite element discretizations meet these
conditions.

A further strategy for maximizing the diagonal elements is
to look for a permutation σ, which maximizes

n∏

i=1

|aσ(i)i|. (2)

Here, the product of the diagonal elements is maximized. This
problem is solved by reformulating the product into a sum and
then to use the same algorithms as mentioned above. For this
approach, it is possible to define two diagonal matrices Dr

and Dc together with a permutation matrix Pr, such that the
scaled and permuted matrix A1 = PrDrADc is an I-matrix,
for which holds:

|a1
ii| = 1, (3)

|a1
ij | ≤ 1. (4)

Olschowka and Neumaier [8] introduced these scalings and
permutations in order to reduce pivoting in Gaussian elimina-
tion of full matrices. We use the abbreviation MPS for these
scalings and the permutation, which stands for “maximize
product on diagonal with scalings”. In the section presenting
the numerical results, we only list the results without a
nonsymmetric permutation and with MPS, since this variant
delivers the best results.

III. SOLVERS FOR SPARSE LINEAR SYSTEMS OF

EQUATIONS

In this section the algorithms and strategies that are used
in the direct and preconditioned iterative linear solvers in the
numerical experiments are discussed.

A. Sparse direct solver technology

Figure 1 outlines the PARDISO approach [2] to solve an
unsymmetric sparse linear system of equations. According
to [5], it is very beneficial to precede the ordering by per-
forming a nonsymmetric permutation to place large entries
on the diagonal and then to scale the matrix so that the
diagonal entries are equal to one. Therefore, in step (1) the
row permutation matrix, Pr, is chosen so as to maximize
the absolute value of the product of the diagonal entries in
PrA. The code used to perform the permutations is taken
from MC64, a set of Fortran routines that are included in
HSL (formerly known as Harwell Subroutine Library). The
diagonal scaling matrices, Dr and Dc, are selected so that
the diagonal entries of A1 = PrDrADc are 1 in absolute
value and its off-diagonal entries are less than or equal to 1
in absolute value.

In step (2) any symmetric fill-reducing ordering can be com-
puted based on the structure of PrA + AT PT

r , e.g. minimum
degree or nested dissection. All experiments reported in this
paper with PARDISO were conducted with the Metis nested
dissection algorithm [9].

Like other modern sparse factorization codes, PARDISO
heavily relies on supernodes to efficiently utilize the memory
hierarchies in the hardware. An interchange among the rows
and columns of a supernode, referred to as complete block
diagonal supernode pivoting, has no effect on the overall fill-
in and this is the mechanism for finding a suitable pivot in
PARDISO. However, there is no guarantee that the numerical
factorization algorithm will always succeed in finding a suit-
able pivot within the supernode block. When the algorithm
reaches a point where it cannot factor the supernode based

0-7803-7826-1/03/$17.00 © 2003 IEEE- 104 -

(1) Row/column equilibration A1 ← Pr · Dr · A · Dc,
where Dr and Dc are diagonal matrices and Pr is
a row permutation that maximizes the magnitude of
the diagonal entries.

(2) Find a symmetric permutation Pfill to preserve
sparsity: A2 ← Pfill · A1 · P T

fill and based on
Â = A1 + AT

1 .
(3) Level-3 BLAS factorization A2 = QrLUQc with

diagonal block supernode pivoting permutations Qr

and Qc. The growth of diagonal elements is controlled
with:

if (|lii| < ε · ‖A2‖∞) then
set lii = sign(lii) · ε · ‖A2‖∞

endif
(4) Solve Ax = b using the block L and U factors, the

permutation matrices Pfill, Pr, Dr, Dc, Qr and Qc

and iterative refinement.

Fig. 1. Pseudo-code of the complete block diagonal supernode pivoting
algorithm for general unsymmetric sparse matrices.

on the previously described supernode pivoting, it uses a
pivot perturbation strategy similar to [5]. The magnitude of
the potential pivot is tested against a constant threshold of
α = ε · ‖A2‖∞, where ε is the machine precision and ‖A2‖∞
is the ∞-norm of the scaled and permuted matrix A2.

Therefore, in step (3), any tiny pivots encountered during
elimination are set to sign(lii) · ε · ‖A2‖∞ — this trades off
some numerical stability for the ability to keep pivots from
getting too small. Although many failures could render the
factorization well-defined but essentially useless, in practice it
is observed that the diagonal elements are rarely modified for
the large class of matrices that has been used in the numerical
experiments. The result of this pivoting approach is that the
factorization is, in general, not exact and iterative refinement
may be needed in step (4).

B. Incomplete LU factorizations

Iterative methods are usually combined with precondition-
ers to improve the convergence rates. Especially for ill-
conditioned matrices, iterative methods fail without the ap-
plication of a preconditioner. We briefly discuss some of the
most common preconditioners. For a deeper understanding we
refer the reader to [10].

A frequently used class of preconditioners are incomplete
LU-factorizations. In contrary to full Gaussian elimination,
the factors L and U are not computed exactly, but some
elements are disregarded during the elimination, which makes
it more economical to compute, store and solve with. Several
strategies have been proposed in the literature to determine
which elements are kept and which are dropped. One of the
simplest ideas is to keep those elements in L and U, whose
corresponding values in the given matrix are nonzero. This
version is called ILU(0).

The generalization of ILU(0) is the incomplete LU-
factorization ILU(p), which uses the concept of “level-of-fill”.

In this method, each element of L and U has an associated level
during the elimination. Here, an element is dropped during the
factorization, if its level becomes larger than a given threshold
p. The complexity of this preconditioner is higher than for
ILU(0). In addition, the memory demand is not known until
the computation is completed. Since it is solely based on the
structure of the matrix and the numerical values of the matrix
are not taken into account, the resulting preconditioning can
be poor.

In the ILUT(ε, q) factorization, the dropping is based on the
numerical values rather than the positions. Most incomplete
factorizations are either row (or column) oriented. After a
row has been computed in the ILUT(ε, q) factorization, all
elements in this row of L and U smaller than the given
tolerance ε are disregarded. In order to limit the size of
the factors, only the q largest elements in each row are
kept. For non-diagonally dominant and indefinite matrices, this
preconditioner usually gives better results than ILU(p).

The combination of ILU(p) and ILUT(ε, q) leads to a
factorization, which is not often mentioned in the literature.
We call this method ILUPT(p, ε) in the remainder of this
document. An element is always kept in this factorization, if
its level is zero. If the level is positive, the element is dropped
if either the value is smaller than the given tolerance ε or its
level exceeds p.

IV. DESCRIPTION OF THE TEST PROBLEMS

This section gives an overview of the matrices that are used
for the numerical experiments. Some general informations
about the matrices are given in Table I. They are extracted
from different semiconductor device simulations with differ-
ent simulators. A part stems from simulations with FIEL-
DAY [11] from the IBM Thomas Watson Research Center.
Others originate from the semiconductor device simulator
DESSISISE [12], which is a product of ISE Integrated Sys-
tems Engineering Inc.

As stated earlier, most of the matrices are very ill-
conditioned. The influence of MPS on the condition numbers
is significant for most of the matrices. The spectrum benefits
from nonsymmetric matrix scalings and permutations and the

TABLE I

GENERAL INFORMATIONS AND STATISTICS OF THE MATRICES USED IN

THE NUMERICAL EXPERIMENTS.

Name Unknowns Elements Dimension Simulation

2D bjtcai 27’628 442’898 2D Fielday
2D highK 54’019 996’414 2D Fielday
3D Tetra 28’984 599’170 3D Fielday
field 3D 51’448 1’056’610 3D Fielday
barrier2-9 115’625 3’897’557 3D Dessis
ibm 2 51’448 1’056’610 3D Fielday
igbt3 10’938 234’006 2D Dessis
matrix 3 125’329 2’678’750 3D Fielday
matrix 9 103’430 2’121’550 3D Fielday
nmos3 18’588 386’594 2D Dessis
para-4 153’226 5’326’228 3D Dessis

0-7803-7826-1/03/$17.00 © 2003 IEEE- 105 -

TABLE II

LU FACTORIZATION TIMES AND PEAK MEMORY USAGE (MEM) FOR DIFFERENT SOLVERS ON THE IBM POWER4. THE BEST TIMES ARE SHOWN IN

BOLDFACE, THE SMALLEST MEMORY USAGE IS UNDERLINED. THE MEMORY USAGE WAS MEASURED WITH MEMPROF ON LINUX.

SuperLUdist 2.0 UMFPACK 4.1 WSMP 1.9.7 PARDISO 3.0
Matrices time mem time mem time mem time mem

(sec.) (MByte) (sec.) (MByte) (sec.) (MByte) (sec.) (MByte)

2D bjtcai 0.6 68 0.7 51 0.4 198 0.5 51
2D highK 1.7 156 1.9 128 0.9 441 1.2 117
3D Tetra 5.5 158 43.0 553 3.4 263 4.3 129
field 3D 20.4 370 18.6 516 12.8 465 12.0 276
barrier2-9 302.4 1863 ‡ ‡ 94.6 1357 107.5 1119
ibm 2 24.8 370 18.5 516 13.0 465 11.8 276
igbt3 0.2 29 0.3 22 0.1 42 0.1 24
matrix 3 177.3 1408 149.9 2065 85.3 1283 95.3 1005
matrix 9 204.0 1268 150.0 1859 115.5 1347 79.8 847
nmos3 0.5 53 0.5 42 0.2 170 0.5 42
para-4 ‡ ‡ ‡ ‡ ‡ ‡ 163.5 1487

Thresh static 0.1 0.01 supernodal

ill-conditioning is greatly reduced for most of the matrices.
The number of diagonal dominant rows and columns is also
affected by the permutation and scaling and increases after
the preprocessing with MPS. The condition numbers and the
number of diagonal dominant rows and columns can be found
in [13].

V. NUMERICAL RESULTS

The numerical experiments were performed on one node on
a Regatta pSeries 690 Model 681 SMP with Power4 processors
running at 1.3 GHz. All algorithms were implemented in
Fortran 77 and C. The codes were compiled by xlf and xlc
with the -O3 optimization option in 32-bit mode and are linked
with the IBM Engineering and Scientific Subroutine Library.

A. Direct Solvers

1) Serial performance of some general sparse solvers:
Tables II and III list the time for the factorization in seconds
and the peak memory usage in MByte of some common
packages for solving large sparse systems of linear equations
on a single IBM Power 4 processor. This table is shown to
contrast the performance of PARDISO 3.0 [2] with other well-
known software packages. The sparse solvers compared in
this section are SuperLUdist [5], UMFPACK 4.1 [6], WSMP
[4] and PARDISO. The package SuperLUdist is designed
for distributed memory computers using MPI, whereas the
target architecture for WSMP and PARDISO is a shared
memory system using Pthreads or OpenMP, respectively, and
UMFPACK is a sequential code.

A memory failure in the computation of the 32-bit factor-
ization is marked with “‡” and indicates that the solver needs
more than 2GB of memory for the factorization. For all solvers
the recommended default options were used.

The smallest pivoting threshold for UMFPACK and WSMP
has been chosen so that all completed factorizations yielded
a backward error that is close to machine precision. As a
result, the threshold value is 0.01 for WSMP, and 0.1 for
UMFPACK. SuperLUdist does not have an option for partial

pivoting since it is significantly more complex to implement
numerical pivoting on distributed memory architectures, hence
the threshold is indicated as static pivoting. PARDISO uses
complete block diagonal pivoting; hence the threshold is
indicated as supernodal pivoting.

In addition to the pivoting approach used, there are other
significant differences between the solvers. By default, PAR-
DISO and SuperLUdist use the maximal matching algorithm
[3] to maximize the product of the magnitudes of the diagonal
entries for all matrices. WSMP uses a similar preprocessing
only on matrices if the structural symmetry is less than 80%,
and UMFPACK 4.1 does not use it at all. Secondly, by
default, SuperLUdist, WSMP, and PARDISO use a symmetric
permutation computed on the structure of A+AT . SuperLUdist

uses the multiple minimum degree, WSMP and PARDISO use
a nested dissection ordering, and UMFPACK uses a column
approximate minimum degree algorithm to compute a fill-in
reducing reordering. The third difference is that WSMP is the
only solver that reduces the coefficient matrix into a block
triangular form.

From the numerical experiments summarized in Table II it
appears that PARDISO and WSMP have the smallest overall
factorization time with default solver options, and PARDISO
in general requires significantly less memory compared to the
other solvers and thus it is able to solve all matrices in 32-bit
mode.

2) Parallel performance: For the parallel performance and
scalability, the LU factorization of PARDISO is compared
with that of WSMP in Table III. WSMP uses the Pthreads
library and PARDISO uses the OpenMP parallel directives. In
contrast to SuperLUdist and UMFPACK, WSMP and PAR-
DISO are designed for a shared-address-space paradigm so no
additional constraints or overhead may occur in the compari-
son of these two similar solvers. The solver WSMP was run
in parallel with the environment variables SPINLOOPTIME
and YIELDLOOPTIME set to their recommended values.

The observation that can be drawn from the table is that
the factorization times are affected by the preprocessing and

0-7803-7826-1/03/$17.00 © 2003 IEEE- 106 -

TABLE III

LU FACTORIZATION TIME IN SECONDS, AND SPEEDUP (S) OF WSMP AND

PARDISO ON ONE (T1) AND EIGHT (T8) 1.3 GHZ IBM POWER 4

PROCESSORS. THE BEST TIME AND SPEEDUP WITH EIGHT PROCESSORS IS

SHOWN IN BOLDFACE, THE BEST TIME WITH ONE PROCESSOR IS

UNDERLINED.

WSMP PARDISO

Matrices T1 T8 S T1 T8 S
(s) (s) T1

T8
(s) (s) T1

T8

2D bjtcai 0.42 0.20 2.10 0.46 0.12 3.75
2D highK 0.94 0.31 3.02 1.20 0.25 4.81
3D Tetra 3.41 1.58 2,15 4.27 0.76 5.16
field 3D 12.8 4.10 3.12 12.0 1.90 6.31
barrier2-9 94.6 31.7 2.98 107. 18.5 5.78
ibm 2 13.0 4.07 3.19 11.8 1.98 5.91
igbt3 0.11 0.14 0.78 0.14 0.04 3.51
matrix 3 85.3 23.0 3.70 95.3 16.1 5.91
matrix 9 115. 33.0 3.48 79.8 13.1 6.01
nmos3 0.21 0.13 1.61 0.35 0.10 3.50
para-4 ‡ ‡ ‡ 163. 23.2 7.01

WSMP is, in most cases, faster on a single Power 4 processor.
The reason is that WSMP is the only sparse direct solver which
reduces the coefficient matrix into a block triangular form. As
a result WSMP in general needs less operations for the sequen-
tial factorization and is therefore faster than PARDISO on one
processor. However, the two-level scheduling [2] employed in
PARDISO results in better scalability and a significantly faster
factorization with eight processors.

B. Iterative Solvers

In this section, we also present the numerical results to
see how nonsymmetric permutations influence the iterative
solution of the linear systems in semiconductor device sim-
ulation. We used BICGSTAB [14] preconditioned with three
different incomplete LU-factorizations to carry out the nu-
merical experiments. The preconditioner was applied from
the left. Two different stopping criteria have been used: the
iteration is stopped, if either the preconditioned residual is
reduced by a factor of 10−8 or 200 iterations are reached. Like
in direct methods, the linear systems are ordered before the
preconditioner is computed. Thus the iterative solution consists
of four steps:

1) Determination of a nonsymmetric matrix permutation
and scaling (MPS)

2) A symmetric permutation with RCM is computed
3) Creation of a preconditioner.
4) Call of an iterative method (BICGSTAB)

The first two steps are optional. For the second step, we
use RCM, since this is often the best choice for incomplete
factorizations. A real right hand side b was used in the numer-
ical experiments for the FIELDAY and DESSISISE matrices.
The initial guess x0 was always zero for the preconditioned
iterative methods.

In Table IV we have listed a number of iterations counts of
BICGSTAB for different incomplete LU-factorizations with

and without a nonsymmetric permutation and scaling. The
cases in which the iterative method did not converge are
labeled with “‡”.

For ILU(0), the influence of MPS on the number of
iterations is not as high as one would expect. For some
matrices the number of iterations is even worse with MPS
than without. However, in our experience ILU(0) with the
nonsymmetric permutation and scaling is slightly more stable.
If the iterative method failed with MPS, then it also did not
succeed without it. But in some situations, the linear systems
could only be solved with MPS. Our results coincide with
observations from others [15], that is, if a system can be solved
by ILU(0) without MPS, then its influence is not significant or
even disadvantageous. We have also tested other nonsymmetric
permutations, but the results are worse than with MPS.

The behavior of the ILUPT(5,0.01) factorization is different
than for ILU(0). A lot of systems can be solved in com-
bination with or without nonsymmetric permutation. Despite
one linear system could not be solved with MPS, on the
average, the number of iterations is lower with nonsymmetric
permutation and scaling. Other nonsymmetric permutations
not listed in Table IV give comparable results.

In our ILUT(ε, q) implementation we do not limit the
number of entries in each row, i.e. we set q = ∞. The
impact of nonsymmetric permutations on ILUT(0.01,∞) is
quite high. A lot of systems can only be solved with MPS and
the number of iterations is significantly reduced. In addition,
there are often fewer nonzeros in the incomplete factors
for this ordering than without a nonsymmetric permutation
and therefore one iteration step requires fewer floating point
operations. Numerical experiments with other nonsymmetric
permutations showed, that they can not compete with MPS.

The number of iterations gives a good indication of the
reliability of preconditioner. However, the total time to perform
the four steps for the iterative solution is more important
because it directly influences the time for a semiconductor
device simulation. In Table V, the total time for different
preconditioners without a nonsymmetric permutation and with

TABLE IV

NUMBER OF ITERATIONS OF BICGSTAB PRECONDITIONED WITH THREE

DIFFERENT INCOMPLETE LU-FACTORIZATIONS. THE LOWEST ITERATION

COUNTS ARE SHOWN IN BOLDFACE.

ILU(0) ILUPT(5,0.01) ILUT(0.01,∞)
Matrix None MPS None MPS None MPS

2D bjtcai ‡ 177 155 76 ‡ 125
2D highK 156 169 96 83 ‡ 89
3D Tetra ‡ ‡ 194 86 ‡ 79
field 3D 66 64 59 37 135 32
barrier2-9 ‡ 128 72 ‡ ‡ 171
ibm 2 88 93 64 39 136 34
igbt3 106 107 36 44 ‡ 54
matrix 3 125 143 89 48 88 47
matrix 9 68 66 50 31 77 30
nmos3 ‡ ‡ 51 30 ‡ 22
para-4 ‡ 168 51 53 77 53

0-7803-7826-1/03/$17.00 © 2003 IEEE- 107 -

TABLE V

TOTAL TIME IN SECONDS FOR COMPLETE ITERATIVE SOLUTION FOR

THREE DIFFERENT INCOMPLETE LU-FACTORIZATIONS. THE BEST TIME IS

SHOWN IN BOLDFACE.

ILU(0) ILUPT(5,0.01) ILUT(0.01,∞)
Matrix None MPS None MPS None MPS

2D bjtcai ‡ 2.53 2.13 1.19 ‡ 1.26
2D highK 4.45 5.11 3.15 2.95 ‡ 2.08
3D Tetra ‡ ‡ 3.26 1.81 ‡ 1.02
field 3D 2.56 2.53 2.51 2.29 8.54 1.18
barrier2-9 ‡ 22.2 15.0 ‡ ‡ 10.9
ibm 2 2.96 3.34 2.70 2.36 8.54 1.25
igbt3 0.68 0.75 0.36 0.40 ‡ 0.31
matrix 3 10.4 11.2 7.93 6.39 23.3 3.35
matrix 9 4.86 4.80 4.73 5.05 18.4 3.08
nmos3 ‡ ‡ 0.77 0.54 ‡ 0.33
para-4 ‡ 35.8 16.9 13.2 6.63 6.31

MPS are given. ILU(0) without a nonsymmetric permutation
is often faster than with MPS. However, the latter succeeds for
more systems. ILUT(0.01,∞) together with MPS is for all but
one example the fastest combination. It is between two and
three times faster and significantly more stable than ILU(0).
The performance of ILUPT(5,0.01) is slightly better than
ILU(0) but does not reach the one for ILUT. A comparison
of the times to perform the factorization shows, that ILUT
is much cheaper to compute than ILUPT. For the largest
matrices, the former is about ten times faster. The large
difference stems from the fact, that ILUPT contains at least the
nonzero structure of the original matrix. This has a significant
influence on the number of elements in the factors. As an
example, for matrix “para-4” more than four times as many
elements appear in the factors of ILUPT. As a result, this
makes both the factorization and each iteration step more
expensive. It is interesting to note, that MPS reduces the
factorization time of ILUPT in about half of the systems,
but the number of nonzeros remains the same.

VI. CONCLUSION

We presented an overview of the performance of current
direct solvers for linear systems that emerge in semiconductor
device simulation. The results show a variance of a factor of
up to three in both the solution times as well as the memory
usage. The unsymmetric diagonal maximization reorderings
significantly reduce the demand for pivoting in direct solution
methods and thus enabled algorithmic improvements in the
factorization, that enhance the robustness as well as the
scalability of recent solvers [2].

A recently discovered feature of these reorderings is their
beneficial effect on matrices from semiconductor device sim-
ulation. From our experiments, we see that, for the pre-
conditioned iterative Krylov subspace solvers, nonsymmetric
permutations combined with scalings give the best results in
terms of the number of required iterations and the time to
compute the solution. Especially for the ILUT preconditioner,
where the dropping is based on the numerical values, the

nonsymmetric permutation has a significant impact. The influ-
ence is smaller for the incomplete factorizations ILU(0) and
ILUPT, where the positions of the values determine the drop-
ping. The robustness of those preconditioners is nevertheless
improved with the use of the nonsymmetric permutations. On
an average, the most efficient preconditioner for our matrices
was the ILUT factorization with nonsymmetric scaling and
permutation (ILUT+MPS), which outperformed the others in
a number of cases. The method ILUT+MPS is both robust
and cost effective and it is the only algorithm that could
solve almost all our test matrices from semiconductor device
simulations.

In direct comparison, the iterative methods can be up to
25 times faster than the direct ones, especially for large
matrices. Although they generally bear the risk of being
unstable for certain matrices, the presented results show that
the unsymmetric reorderings enable the efficient and robust
solution of systems, that were as yet not solvable with standard
Krylov subspace methods.

REFERENCES

[1] A. Gupta, “Improved symbolic and numerical factorization algorithms
for unsymmetric sparse matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 24, no. 2, pp. 529–552, 2002.

[2] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of
linear equations with PARDISO,” to appear in Future Generation
Computer Systems, 2003.

[3] I. S. Duff and J. Koster, “On algorithms for permuting large entries to the
diagonal of a sparse matrix,” SIAM J. Matrix Analysis and Applications,
vol. 22, no. 4, pp. 973–996, 2001.

[4] A. Gupta, “WSMP: Watson sparse matrix package (Part-II: direct
solution of general sparse systems,” IBM T. J. Watson Research Center,
Yorktown Heights, NY, Tech. Rep. RC 21888 (98472), November 20,
2000.

[5] X. Li and J. Demmel, “A scalable sparse direct solver using static pivot-
ing,” in Proceeding of the 9th SIAM conference on Parallel Processing
for Scientic Computing, San Antonio, Texas, March 22-34,1999.

[6] T. A. Davis, “Algorithm 8xx: UMFPACK V4.1, an unsymmetric-pattern
multifrontal method with a column pre-ordering strategy,” University of
Florida, Tech. Rep. TR-03-007, 2003, submitted to ACM Trans. Math.
Software, http://www.cise.ufl.edu/research/sparse/umfpack.

[7] I. S. Duff and J. Koster, “The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices,” SIAM J. Matrix Analysis
and Applications, vol. 20, no. 4, pp. 889–901, 1999.

[8] M. Olschowka and A. Neumaier, “A new pivoting strategy for gaussian
elimination,” Linear Algebra and its Applications, vol. 240, pp. 131–151,
1996.

[9] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[10] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, 1996.

[11] IBM Thomas Watson Research Center, Fielday Reference Manual, IBM
Thomas Watson Research Center (http://www.research.ibm.com), 2003.

[12] Integrated Systems Engineering AG, DESSIS−ISE Reference Manual,
ISE Integrated Systems Engineering AG (http://www.ise.com), 2003.

[13] O. Schenk, S. Röllin, and A. Gupta, “The effects of nonsymmetric matrix
permutations and scalings in semiconductor device and circuit simula-
tion,” Integrated Systems Laboratory, Swiss Fed. Inst. of Technology
(ETH), Zurich, Switzerland, Tech. Rep. 2003/9, 2003, submitted to IEEE
Transactions on Computer-Aided Design.

[14] H. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of non-symmetric linear systems,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–
644, 1992.

[15] M. Benzi, J. C. Haws, and M. Tuma, “Preconditioning highly indefinite
and nonsymmetric matrices,” SIAM J. Scientific Computing, vol. 22,
no. 4, pp. 1333–1353, 2000.

0-7803-7826-1/03/$17.00 © 2003 IEEE- 108 -

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

