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Abstract— A technique for the analysis of fluctuations in ultra 
small semiconductor devices is presented.  This technique is 
applied to the computation fluctuations of threshold voltages and 
terminal characteristics of MOSFET devices due to the random 
doping fluctuations and oxide roughness.  It is based on the 
linearization of transport equations with respect to the 
fluctuating quantities.  This approach completely avoids 
computations for many device realizations and, therefore, it is 
computationally much more efficient than Monte-Carlo 
techniques. 
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I.  INTRODUCTION 
The precision of analog and mixed signal electronic 

circuits depends in general on the accurate matching of 
electrical parameters of their components.  Unfortunately, due 
to the random nature of ion implantation and diffusion 
processes and to the fluctuations of geometrical characteristics 
(oxide thickness, length, width, etc.), the electrical parameters 
of devices fluctuate around their nominal values [1]-[3].  
Random doping and geometrical fluctuations are especially 
pronounced in small devices where spatial scales of these 
fluctuations are more or less comparable with device 
dimensions.  They lead to appreciable fluctuations of threshold 
voltages [4], [5], small signal parameters [6], [7], and 
subthreshold characteristics [8] of semiconductor devices.  For 
this reason, an accurate statistical analysis of random dopant-
induced effects is very important for the further progress in 
semiconductor technology in general and mixed signal 
electronics in particular. 

The existing approaches to the analysis of fluctuations in 
semiconductor devices are based on generating numerous 
realizations of devices and solving the transport equations for 
each of such realization (Monte-Carlo methods).  In this way, 
statistics of different parameters of interest are accumulated 
and then used for the evaluation of variances of those 
parameters.  These methods are computationally very 
expensive since the same device-level simulations have to be 
performed many times.  A new method that overcomes these 
difficulties has been recently developed for the computation of 
random doping induced fluctuations of threshold voltage, drain 
current, and small signal parameters of MOSFET devices [4], 
[5], within the framework of classical drift-diffusion model.  

This method is based on the linearization of transport equations 
with respect to the fluctuating quantities and it is 
computationally much more efficient than the existing purely 
statistical methods.  In addition, it provides information about 
the sensitivity of threshold voltages to the fluctuations of 
doping concentration and oxide thickness at different locations 
and, therefore, it is instrumental in the design of fluctuation-
resistant structures.  In this paper, we extend this technique to 
the analysis of threshold voltage (VT) fluctuations of MOSFET 
devices induced by the random doping and random oxide 
roughness, and we take into account quantum mechanical 
effects within the framework of density gradient (DG) model.  
It should be noted that a similar approach can be used for the 
computation of fluctuations induced by other random 
parameters like the channel length and interface charge density. 

Throughout this work, the electron and hole transport in 
the semiconductor is described by the density gradient (DG) 
model [9].  By considering the steady state case and by 
neglecting recombination, the DG model can be summarized 
by the following system of nonlinear, second order partial 
differential equations: 
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where nφ  and pφ  are the electron and hole quasi-Fermi 
potentials, respectively,  
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are two fitting parameters that “control” the quantum 
mechanical effects in the semiconductor, *

nm  and *
pm  denote 

the effective masses of electrons and holes, and nr  and pr  are 
dimensionless parameters that account for statistics of electron 
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and holes in semiconductor devices.  The values of nr  and pr  
vary asymptotically from 1, when only the lowest energy 
subband is occupied (e.g.  low temperature), to 3 when the 
other subbands become populated as well (e.g.  high 
temperature).  In our simulations, we have considered 

3n pr r= = , *
00.21nm m= , and *

00.49pm m= .  Equations (1)-(4) 
are subject to appropriate boundary conditions and are solved 
self-consistently for the variables ϕ , n , p , nφ  and pφ .  
More details related to the numerical implementation of DG 
model can be found in [10]. 

II. ANALYSIS OF FLUCTUATIONS 
In this section, the basic idea of our method is described 

for the computations of fluctuations of threshold voltages in 
MOSFET devices. 

Let A be some parameter of the semiconductor device (e.g.  
threshold voltage, drain current, etc.) that fluctuate due to 
random doping fluctuations and/or to random oxide roughness.  
This parameter can be written as the sum of its average value 

0A  and some fluctuations A% : 

 0A A A= + % ,    0A =% , (6) 

where A%  denotes the expected value of A% .  In order to relate 
the fluctuations of A to the fluctuations of doping at different 
locations inside the semiconductor device, we discretize the 
device region in N cells.  Then, the doping concentration in the 
discretization cell i ( iD ) can be written as the sum of the 
average value of the doping at that location ( 0iD ) and some 
fluctuations iD% : 

 0i i iD D D= + % ,    0iD =% . (7) 

An equation similar to (8) can also be written for the 
fluctuations of oxide thickness: 

 0j j jt t t= + % ,    0jt =% , (8) 

where jt  denotes the corresponding oxide thickness at mesh 
cell j at the silicon-oxide interface.  In the first order 
approximation, the fluctuations of A can be expressed as a 
linear combination of the doping and oxide thickness 
fluctuations: 

 i j
i j A i A j

i j i ji j

A AA D t D t
D t

β γ∂ ∂= + = +
∂ ∂∑ ∑ ∑ ∑% % %% % , (9) 

where i
A iA Dβ = ∂ ∂  and j

A jA tγ = ∂ ∂  are the doping and oxide 
thickness superposition coefficients of A.  These coefficients 
show how sensitive parameter A is to the fluctuations of doping 
concentration and oxide thickness at different locations and, 
therefore, they are very instrumental in the design of dopant 
fluctuation-resistant structures. Equation (9) allows one to 
compute 2

Aσ  if one knows the statistics of doping concentration 
and the autocorrelation function (ACF) of the oxide thickness 

fluctuations.  If we assume (as it is usually done in literature) 
that the fluctuations of doping concentration are independent 
Poisson random variables and they are independent from the 
fluctuations of oxide thickness, one can evaluate 2

Aσ  as 
follows: 

 ( ) ( )1 2

1 2
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,
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where ( j1, j2 ) are two indices  that parameterize the discretized 
oxide-silicon interface.  The AFC is defined as: 

 ( ) ( ) ( ), i i j i i jACF i j t t t t t t= − ⋅ − = ⋅% % . (11) 

This function can be directly [11] measured but, in most cases, 
it can be approximated by an exponential distribution function.  
The problem of the computation of Aσ  is thus reduced to the 
computation of superposition coefficients of parameter A.  It 
can be shown that i

Aβ  and j
Aγ  can be computed numerically 

with very low computational cost by linearising the transport 
equations with respect to the fluctuating quantities. 

The rest of this section presents the method for the 
computation of superposition coefficients of the drain current 
( DSA I= ) and threshold voltage ( TA V= ).  The method 
described below is similar to the method presented in [4].  For 
the sake of brevity, it is convenient to consider the transport 
equations (7)-(11) in discretized vector form: 

( ), , , 0GV =F X D t , where X  is the state vector (also called 
variable vector) that consists of the mesh-point values of the 
potential, electron and hole concentration and quasi-Fermi 
potentials, D  and t  are two column vectors whose 
components are iD  and jt  respectively, GV  is the potential on 
the gate and F is the “equation” vector that has the same 
dimension as X.  If %X  denotes the fluctuations of the state 
vector and GV%  the fluctuations of the gate potential, than one 
can write in the first order approximation: 

 ˆ ˆ ˆ 0
GV GV+ =% % %%

X D tF X + F D F t + F , (12) 

where ˆ
XF , ˆ

DF , ˆ
tF , and 

GVF  are the derivatives of F  with 
respect to X, D, t, and GV , respectively.  All these derivatives 
are computed at the given d.c.  bias point and average values 
for doping concentration and oxide thickness.  The drain 
current can also be written as a function of the state X, and D: 

 ( )DSI I= X , (13) 

At threshold voltage, G TV V=% %  and the fluctuations of the 
drain current are zero because the drain current is constant. 
Therefore, equation (13) implies: 

 0 DS= I I% %
X = X , (14) 

where IX  is the derivative of I with respect to the state 
variable. Equations (12) and (14) can be solved for the 
fluctuations of the gate voltage and one obtains: the following 
formula for  G TV V=% % : 
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where gt is the transpose of the column vector g and can be 
found by solving the following linear system of equations: 

 ˆ t IX XF g = , (16) 

where ˆ t
XF  denotes the transpose of matrix ˆ

XF .  By comparing 
this equation to (9), one observes that the factors that multiply 
%D  and %t  in (19) are the superposition coefficients of threshold 

voltage. 

Concerning the numerical implementation of the method, it 
is worth observing that most of the matrices and vectors in 
(16)-(17) are sparse and their elements can be easily computed.  
For example, most of the components of vector 

GVF  in (17) are 
equal to zero because F has only a few equations which are 
related to GV  (usually these equations are associated with the 
boundary conditions for system (1)-(4)).  The same observation 
can be made about the elements of matrix ˆ

tF  because the oxide 
discretization region contains a small number of mesh-points 
compared to the overall device discretization region.  Since at 
room temperature the doping enters linearly in Poisson 
equation, the derivatives of F with respect to D (matrix ˆ

DF ) 
can be easily computed analytically, and the numerical 
implementation is simplified considerably. 

III. NUMERICAL RESULTS 
The method presented in previous section has been 

numerically implemented and used to calculate the variances of 
threshold voltages in MOSFET devices.  Throughout the 
calculations the electron and hole mobilities have been 
described by the model presented in [12]. 

The simulations have been performed on a set of MOSFET 
devices that have a structure similar to the retrograde model 
presented in [13].  The channel doping concentration decreases 
from 185 10×  cm-3 at 20 nm (and deeper) to 175 10×  cm-3 at the 
surface according to a truncated Gaussian distribution function.  
The source and drain dopings have a Gaussian distribution with 
n-type peak surface concentration of 2010  cm-3 and vertical 
struggles of about 8.2 nm that correspond to a junction depth of 
about 20 nm.  The lateral source and drain struggles are about 
1.34 nm and the source and drain extensions under the gate are 
4 nm.  The metallurgical channel length is 40 nm and 
corresponds to an effective channel length of about 44 nm (the 
effective channel length has been defined according to [13] by 
the points where the source-drain doping concentration falls to 
2x1019 cm-3).  The thickness of the oxide is 2 nm and the width 
of the device is 40 nm.  In the presented results, usually one of 
the above parameters is varied while the other ones are held 
constant. 

First, we have analyzed the threshold voltage fluctuations 
induced by random doping fluctuations. Figures 1 and 2 
present the dependence of 

TVσ  on the doping concentration and  
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Figure 1. Standard deviation of VT  as a function of the average doping 
concentration in the channel (a) and width of the channel(b). Only doping 

fluctuations are assumed in these simulations. 

 

channel width can be explained qualitatively: the fluctuations 
of the doping concentration are averaged out by the larger 
volume of the device and therefore VT is not as sensitive to 
these fluctuations. For long devices, it can be proved that 

~ 1
TV Wσ , where W is the width of the device. 

Then, we have investigated the dependence of fluctuations 
of threshold voltage induced by the random oxide roughness on 
the doping concentration and channel width.  The results of 
these simulations are presented in Figures 3 and 4, respectively.  
The autocorrelation function has been assumed to be 
exponential: ( ) ( )2 exp cACF r r L= ∆ − , where ∆  and cL  are 
the roughness and the  correlation length of the oxide thickness 
fluctuations. It is worth to observe from these figures that 

TVσ  

increases approximately as 
aN  and, for large values of the 

correlation length, it is practically independent on the oxide 
channel width.  These results are in agreement to those 
obtained by Asenov et al. [5] by using the Monte-Carlo 
technique. 
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Figure 2. Standard deviation of VT  as a function of the average doping concen-
tration in the channel (a) and width of the channel (b) for different correlation 
lengths. Only oxide thickness fluctuations are assumed in these simulations. 

Finally, we present the analysis of threshold voltage 
sensitivity to local fluctuations of the oxide thickness at 
different points on the semiconductor-oxide interface. This  
analysis is especially important in the design of fluctuations 
resistant structures. Figures 8(a) and 8(b) present the classical 
and quantum (mesh independent) sensitivity coefficients as a 
function of the (x, y) position on the interface. These sensitivity 
coefficients are defined as ( )2

j

T

t
V jSγ ∆  where jS∆  is the area of 

the discretization cell j on the surface of the oxide. It can be 
observed that the threshold voltage is more sensitive to the 
fluctuations of oxide thickness in the middle region of the 
oxide layer, but it is quite insensitive to the edge fluctuations of 
the oxide thickness.  This effect and can have positive 
implications in the fabrication process of the oxide because the 
ulterior etching and deposition of polysilicon usually 
deteriorates the edges of the oxide layer. 

IV. CONCLUSIONS 
A novel technique for the calculations of threshold voltage 

fluctuations caused by random fluctuations of doping and oxide 
thickness is presented. This technique circumvents 
computations for numerous devices and, in addition, it yields 
the information on sensitivity of threshold voltage fluctuations 

to local doping and oxide thickness fluctuations. It is 
demonstrated that the quantum mechanical effects further 
aggravate the situation by increasing the standard deviations of 
threshold voltages by 10-15% for 30 nm scale devices. 

  
Figure 3. Oxide thickness sensitivity coefficients of threshold voltage. 
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