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Abstract— We discuss an approach for the modelling of ran-
dom dopant fluctuations based on the impedance field method
that has been recently integrated into DESSIS [1]. The method
is easy to use and orders of magnitudes more efficient than the
statistical method.

I. INTRODUCTION

As devices become smaller, self-averaging of device prop-
erties for individual devices becomes less effective. Therefore,
for small devices, the statistical variations of device properties
are important. This paper is concerned with one important
source of variations: random dopant fluctuations (RDFs).

The conventional numerical approach to RDFs is to run a
large number of simulations on devices that differ microscop-
ically (this is called the ‘statistical method’). Often, device
samples result from a Monte Carlo process simulation in which
each dopant atom is treated individually [2]–[4]. As the doping
comes from a process simulator, the statistical properties of the
dopant distribution are accounted for automatically. A severe
shortcoming of this method is the huge numerical expense,
caused by the necessity to run many 3D simulations. Treating
individual dopants as point charges causes singularities in
the potential. Different remedies to this problem have been
suggested (for example, splitting the potential in a short-range
and long-range term [2], or modifying the mobility [3]), but the
size of the error introduced by these workarounds is unclear.

II. THEORY

In this paper, we discuss an alternative to model RDFs.
The method (in a slightly different formulation) was proposed
first in Ref. [5]. For each point in the device, we describe
the RDFs by the second-order statistical moments of the
dopant distribution function, and model these moments by
an analytical function. Assuming that the local fluctuations
are small, we can compute the fluctuations of the terminal
characteristics using the impedance field method, which is
familiar from noise modelling [6]. We now outline the method.
To make the connection to noise more obvious, we include a
frequency dependence in the analysis. As the random dopant
fluctuations are static, for the purpose of this paper, ω = 0 is
sufficient.

A. Impedance field method

The device equations read:

∇ε (�r) · ∇φ (�r) = e [n (�r) −N (�r)] for �r ∈ Ω

∇ ·�jn (�r) = eR [n (�r)] + iωn (�r) for �r ∈ Ω
�jn (�r) = µn [kBT∇n (�r) − en (�r) ∇φ (�r)]

n̂ (�r) · ∇φ (�r) = 0 for �r ∈ ∂Ω \ ∪kC
k

n̂ (�r) ·�jn (�r) = 0 for �r ∈ ∂Ω \ ∪kC
k

∫

Ck

d2n̂ ·�jn (�r) = Ik

φ (�r) = Vk + φbi (�r) for �r ∈ Ck ⊂ ∂Ω

n (�r) = n0 (�r) for �r ∈ Ck ⊂ ∂Ω

(1)

n, �jn, φ, T , and N denote the electron density, electron
current density, electrostatic potential, temperature, and dop-
ing concentration, respectively. �r = (x, y, z) is the position
coordinate, n̂ is the unit vector normal to the boundary, Ω
is the computational domain, and Ck is the k-th contact.
The quantities φbi and n0 are given. Only half of the values
for the contact voltages Vk and contact currents Ik can be
prescribed, the others come out as results. For brevity, we omit
the equations for holes. Including them is straightforward, as
is adding equations for temperatures or quantum corrections,
imposing more complicated boundary conditions, or using
more sophisticated models for the dielectric constant ε, the
recombination rate R, or the electron mobility µn.

We add a small perturbation δN to the doping concentration
N . Denoting the response of the density and potential as δn
and δφ, we linearise (1):

∇ε (�r) · ∇δφ (�r) = e [δn (�r) − δN (�r, ω)] for �r ∈ Ω

∇ · δ�jn = e
∂R [n (�r)]
∂n (�r)

δn (�r) + iωδn (�r) for �r ∈ Ω

δ�jn (�r) = µn [kBT∇δn− eδn∇φ− en∇δφ]

n̂ (�r) · ∇δφ (�r) = 0 for �r ∈ ∂Ω \ ∪kC
k

n̂ (�r) · δ�jn (�r) = 0 for �r ∈ ∂Ω \ ∪kC
k

∫

Ck

d2n̂ · δ�jn (�r) = δIk

δφ (�r) = δVk for �r ∈ Ck ⊂ ∂Ω

δn (�r) = 0 for �r ∈ Ck ⊂ ∂Ω

(2)
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Again, in order to obtain a unique solution, we can prescribe
only as many values for δVk and δIk as there are contacts;
the others come out as results.

Here, we demand δIk = 0 and compute δVk. As (2) is linear
in the perturbations, δVk is a linear function of δN :

δVk (ω) =
∫

Ω
d3rGk (�r, ω) δN (�r, ω)

A discretised version of the Green function G can be easily
obtained from the complex Jacobian of the discretised equation
system. We have to solve a matrix similar to this Jacobian for a
single right-hand side. Therefore, computing G takes no more
time than a few Newton steps.

For RDF analysis, δN is the deviation of the doping in a
particular device from the average doping N . Therefore, the
statistical average of δN vanishes, 〈δN〉 = 0. Then, in our
linear approximation 〈δVk〉 = 0 also, and new information is
only obtained from higher order statistical moments,

Sij
V =

∫

Ω
d3�rid3�rjGi (�ri, ω)K (�ri, �rj , ω)G∗

j (�rj , ω) , (3)

where the noise voltage spectrum Sij
V is a second-order

moment defined as Sij
V (ω) =

〈
δViδV

∗
j

〉
(ω).

B. Noise source: model for dopant fluctuation correlations

For the noise source K, we need a physical model. As
the doping is static, K vanishes for ω 
= 0. Furthermore,
we assume that individual dopants are placed randomly and
independently (according to a Poisson distribution) with a
probability given by their average local concentration. There-
fore, the second-order moment of the doping distribution is

K (�ri, �rj , ω) = Ntot (�ri) δ (�ri − �rj) 2πδ (ω) , (4)

where Ntot is the average total doping concentration. (Note
that the moments of acceptors and donors add, rather than
compensate.) Assuming that the dopants are spatially uncor-
related simplifies (3) significantly, as one of the integrations
drops out due to the δ-function.

C. Quasi-2D problems

In practice, we often consider devices that are wide and
nearly homogeneous in one spatial direction z. We can simu-
late them in 2D and take their z-extension into account only by
scaling the results with their width Lz . We now show that this
remains possible for RDF analysis, even when δN is highly
inhomogeneous in z.

For a device homogeneous in z, we can write Ω =
Ω2 × [0, Lz], where Ω2 is the projection of the domain in
the xy-plane. Similarly, Ck = Ck

2 × [0, Lz]. Furthermore,
homogeneity in z means that neither n0 nor φbi in (1) depends
explicitly on z. As a result, the solution (n, φ) is independent
of z as well. For the linearised equation system (2), the only
z-dependence is in the perturbations δn, δ�j, δφ, and δN .

When we average (2) over z, we obtain equations of the
same form. The perturbations are replaced by their z-averages,
and ∇ by the 2D derivative (∂/∂x, ∂/∂y) (the z-component

drops out due to the Neumann boundary conditions at z = 0
and z = Lz). The averaged equations completely determine
δVk in terms of the 2D function δN , the z-average of δN ,

δVk =
∫

Ω2

dxdyG2D
k (x, y, ω) δN (x, y, ω) , (5)

where G2D
k is the Green function obtained from solving the

z-averaged system. From (4) and (5), we obtain

Sij
V =

∫

Ω
d3�r

G2D
i (x, y, ω)

Lz
Ntot (x, y) 2πδ (ω)

G2D∗
j (x, y, ω)

Lz
.

As the z-integration only contributes a factor Lz , we immedi-
ately see that Sij

V ∝ L−1
z . Furthermore, comparison to (3)

shows that Gi (�r, ω) = G2D
i (x, y, ω) /Lz . RDFs for a 3D

problem homogeneous in z therefore can be fully analysed
in 2D, without additional approximations.

III. DISCUSSION

Dopants interact during the diffusion steps of device pro-
cessing. Hence, the assumption that the dopants are uncorre-
lated is questionable. In principle, the impedance field method
is able to handle spatial correlations. However, the additional
integral needed to evaluate (3) has a high numerical cost unless
the correlation length is small compared to the device size.
Due to the lack of appropriate models, we do not consider
spatial correlations here. Our model in (4) has the plausible
property that the absolute value of fluctuation increases with
doping density, but the relative value decreases. We assume
that this is already sufficient to obtain reasonable results.

The most important assumption in our method is that the
fluctuations are small, which allows to linearise the problem.
The actual problem here is the smallness of the solution
variable response (δn, δφ), as the perturbation of the doping
δN indeed does enter the Poisson equation linearly. In parts
of the device where the free carrier concentration is low, we
expect the variation in the free carrier densities to matter only
slightly, and the assumption of linearity to hold. On the other
hand, in regions with many free carriers, the dopants are well
screened, and the doping fluctuations effectively look small.

As distant points in devices are uncorrelated, we can imag-
ine that a very wide device is made up of a large number Z ∝
Lz of independent, narrower devices connected in parallel.
The statistical law of large numbers requires that Sij

V ∝ Z−1.
Hence, for large Lz , any physically reasonable model must
yield Sij

V ∝ L−1
z . As shown in Section II-C, our approach

preserves this fundamental statistical feature, which further
increases our confidence in its ability to provide meaningful
results.

IV. RESULTS

To demonstrate the application of the impedance field
method to RDFs, we investigate the drain current ID and its
standard deviation σID for a simple MOSFET as a function
of gate voltage VG. To this end, we convert the noise voltage
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spectrum to a noise current spectrum using the admittance
matrix Y and then transform it back to the time domain:

σ2
I (t) =

∫
dω

2π
exp (−iωt)Y (ω)SV (ω)Y H (ω)

In this case, we consider the drain to be the only port
and, therefore, the matrices in the equation above are plain
numbers. As SV ∝ δ (ω), the t-dependence disappears.

The simulation was performed in 2D and the width Lz of
the device was accounted for by proper scaling. Fig. 1 shows
relative standard deviation σID/ID. As SV ∝ L−1

z , ID ∝ Lz ,
and Y ∝ Lz , we scaled the curve with

√
Lz to make it

independent of Lz .
For comparison, we performed naive 2D statistical simu-

lations for different Lz . In this approach, for each dopant
species and for each vertex i in the 2D mesh, we determine
the average number 〈Mi〉 = 〈Ni〉AiLz of dopants in the 3D
volume associated with the vertex, based on the area Ai of 2D
box i and the average dopant concentration 〈Ni〉 in the box.
〈Mi〉 parameterises the Poisson distribution function P used
to randomly pick the actual number of dopants Mi (and the
dopant concentration Ni = Mi/AiLz) in the box:

P (Mi) =
exp (−〈Mi〉)

Mi!
〈Mi〉Mi

The variance of the Poisson distribution function is σ2
Mi

=
〈Mi〉 ∝ Lz . Therefore, if the equation system (1) was linear,
we would obtain σID ∝

√
Lz; as it is not linear, deviations are

possible. (The law of large numbers does not apply, as in our
statistical approach the fluctuations are artificially correlated
in z-direction.) While our statistical approach is unphysical,
it allows us to investigate the nonlinearity, using the same 2D
mesh for all simulations, therefore avoiding the problem of
eliminating meshing-related effects from our results.

Fig. 1 shows the results obtained from 50 runs for each de-
vice width. For the devices with Lz = 10µm and Lz = 1µm,
the agreement to the impedance field method is excellent. For
Lz = 0.1µm, small deviations occur. However, the shape of
the curve remains the same.

To use RDF analysis to predict the fraction of devices that
deviate from the average too much to be usable, we must
predict how big the tails of the distribution functions are. It
is not immediately obvious that the variances provide enough
infomation about these tails. In Fig. 2, we show the fraction
h (ID) of runs of our statistical simulations that yielded a drain
current of at most ID. For easier comparison, we plot h as a
function of the normalised quantity (ID − 〈ID〉) /σID rather
than as a function of ID. If the current fluctuations were
Gaussian and for an infinite number of samples, we would
observe

h (ID) =
1

σID

√
2π

∫ ID

−∞
dI exp

[
−1

2

(
I − 〈ID〉
σID

)]
.

Fig. 2 shows that for all values of Lz , our statistical samples
are well approximated by a Gaussian. As the Gauss distribu-
tion function is fully determined by 〈ID〉 and σID , the second-
order moment is sufficient to describe the entire distribution
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Fig. 1. Device width–scaled relative standard deviation of drain current ID
versus gate voltage, obtained from the 2D impedance field method and 2D
statistical simulations with various scaling factors Lz . The channel length of
the device was 100 nm, the oxide thickness was 3 nm, the channel doping
concentration was 5 · 1017 cm−3, and the drain voltage VD = 50 mV. To
simplify comparison, all simulations used a doping-independent mobility.
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Fig. 2. Fraction h (ID) of runs of our statistical simulations that yielded
currents of at most ID. The device and biases were identical to those for
Fig. 1, and VG = 0.3 V.

function, including the tails. (In principle, the impedance field
method is capable to compute higher order statistical moments
also. For local correlations, the numerical cost remains small.)

Both analytical models and numerical experiments using
the statistical method show that the standard deviation of the
threshold voltage scales with the channel length LG as 1/

√
LG

[4]. (This is another manifestation of the statistical law of large
numbers, as discussed in Section III for the Lz-scaling.) To
demonstrate this behaviour with our model, we computed the
standard deviation of the gate voltage σVG as a function of
the gate voltage VG. We assumed that drain voltage VD and
drain current ID are fixed and, therefore, the entire effect of
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Fig. 3. Gate voltage fluctuation as a function of LG. All devices were 1 µm
wide, and had an oxide thickness of 3 nm, a channel doping of 5·1017 cm−3,
and source/drain doping of 1020 cm−3. VD and ID were fixed with respect
to RDFs; the average VD = 50 mV. The lines are 1/

√
LG extrapolations

from the 10 µm data points.
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Fig. 4. Channel length–scaled relative fluctuation of the drain current as a
function of drain voltage for the devices from Fig. 3 for VG = 1.5 V.

the RDFs was transferred to the gate. The results are shown
in Fig. 3. For long channel devices, the 1/

√
LG behaviour

holds for the entire range of gate voltages (and, therefore,
also for the threshold voltage). For short channels, the gate
voltage fluctuation does not follow the 1/

√
LG law. This is

to be expected, as the relative contributions of the channel
become smaller for smaller devices. The fluctuations are in
the same order of magnitude as obtained from the statistical
method [4].

Fig. 4 shows the
√
LG-scaled relative standard deviation of

the drain current, σID

√
LG/ID, as a function of drain voltage

VD for large gate voltage VG = 1.5V. For small VD, the
relative fluctuations increase with VD and then saturate. The
1/

√
LG law holds only for very large LG. Fig. 5 shows the

local noise voltage spectral density (LNVSD) for the drain
voltage fluctuations σVD for the LG = 1µm device (the
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Fig. 5. Drain LNVSD for the LG = 1 µm device from Fig. 3 for VD =
VG = 1.5 V. The contour lines are labelled in units of V2s/cm3.

integral of this quantity over device is σ2
VD

). Clearly, for this
channel length, the non-uniformity along the channel is still
so dominant that the 1/

√
LG-scaling cannot hold.

V. CONCLUSION

We discussed RDF analysis based on the impedance field
method. While the linearisation inherent to the method is not
justified from a theoretical point of view, our numerical exper-
iments do not indicate any severe problems. The linearisation
circumvents the problems that arise in statistical simulations
from the highly localised donor charges.

We demonstated that the statistical fluctuations of the termi-
nal currents are Gaussian and, therefore, well characterised by
the second-order moments. The method is, therefore, suitable
for yield analysis, where the interest is with devices that
deviate greatly from the average.

The impedance field method is much faster than statistical
methods and can be easily embedded into existing DESSIS
simulation projects, using the same physical parameters and
the same meshes as for the simulation of other properties.
Those properties make the method suitable for routine simu-
lations in an industrial environment.
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