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Abstract—This paper presents a novel, rigorous, and fast method 
for full-wave modeling of high-speed interconnect structures. In 
this method, the original wave propagation problem is 
represented into a generalized eigenvalue problem. The resulting 
eigenvalue representation can comprehend conductor and 
dielectric losses, arbitrary dielectric and conductor 
configurations, and arbitrary materials such as dispersive, and 
anisotropic media. The edge basis function is employed to 
accurately represent the unknown field, and the triangular 
element is adopted to flexibly model arbitrary geometry. A mode-
matching technique applicable to lossy system is developed to 
solve large-scale 3D problems by using 2D-like CPU time and 
memory. A circuit-based extraction technique is developed to 
obtain S-parameters from the unknown fields. The proposed 
technique can generate S-parameters, full-wave RLGC, 
propagation constants, characteristic impedances, voltage, 
current, and field distributions, and hence yield a comprehensive 
representation of interconnect structures. Experimental and 
numerical results demonstrate its accuracy and efficiency.  

Keywords-high-speed interconnect; on/off-chip; full-wave 
modeling  

I.  INTRODUCTION 
As the clock frequency of microprocessors enters the giga-

hertz regime and heads towards 20GHz level, accurate full-
wave modeling of on- and off-chip interconnect structures is 
becoming increasingly important. In recent years, a variety of 
full-wave modeling techniques, such as the finite-difference 
time-domain (FDTD) method [1-4], the integral equation based 
methods [5-7], and the finite element method (FEM) [8-9] have 
been applied to the simulation of high-speed interconnects. 
Although they have gained extensive application for board- and 
package-level interconnect problems, little work has been 
reported on the full-wave analysis of on-chip interconnect 
structures.  

On-chip interconnect structures present many challenges 
that are less pronounced in board and package level 
interconnects such as high loss, large aspect ratio, large number 
of conductors, and strong non-uniformity in dielectric stack. 
These challenges result in large computational complexity and 
prevent the direct use of existing full-wave techniques. For 
instance, FDTD usually requires a time step that is constrained 
by the smallest spatial step to ensure stability. This hinders its 

application to realistic on-chip problems since on-chip 
interconnects feature geometries ranging from less than 0.1 
micron to thousands of microns. Although this problem can be 
eliminated by developing an unconditionally stable FDTD 
scheme [4], the computation remains expensive due to the large 
number of unknowns resulting from the 3D geometries and the 
fine discretization required to capture skin effects. Full-wave 
based integral-equation methods generally break down at the 
low frequencies that lie within the frequency band of on-chip 
interconnects [11]. Although advanced numerical techniques 
[11] can be utilized to eliminate this issue, other shortcomings 
limit its usefulness. The method itself either can only be 
applied to the cases wherein the Green’s function is available 
(surface integral equation based methods), or has to be 
formulated into a computationally intensive volume integral 
equation so that the complicated inhomogeneity can be 
modeled. As far as the finite element method is concerned, 
although it can efficiently comprehend arbitrary 
inhomogeneity, most existing solvers neglect the intricacies of 
on-chip interconnects or introduce approximate models to 
simplify the problem, and hence fail to capture the on-chip 
physical phenomena satisfactorily without further 
development. 

In this paper, we propose a novel, fast and accurate full-
wave modeling technique that is applicable to both on- and off-
chip interconnect structures. In this technique, the complexity 
of 3D interconnects is overcome by seeking the full-wave 
solution of a few 2D problems, which are then post-processed 
to obtain the solution of the original 3D problem. The entire 
procedure is rigorous, and does not introduce approximations. 
This methodology provides an accurate solution to 3D 
interconnect problems by only employing 2D-like CPU time 
and memory. Experimental and numerical results demonstrate 
the accuracy and efficiency of the proposed modeling 
technique.  

II. FORMULATION 
To model 3D interconnect structures, first we identify a set 

of unique structure seeds. Take a typical Manhattan-type 
interconnect shown in Fig. 1 as an example, the number of 
unique structure seeds is only 8 although the structure itself can 
consist of thousands of segments (a segment has a constant 
cross section). If we use three digits to describe each structure 
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seed, the 8 structure seeds can be represented by 000, 001, …, 
111 respectively. The first, second, and third digits correspond 
to M5, M3, and M1 layers respectively. For each digit, value 0 
denotes the absence of the orthogonal lines in that layer, 
whereas value 1 denotes its presence. If the orthogonal lines are 
aligned in each layer, the total number of unique structure 
seeds is only 2. One refers to the presence of all of the 
orthogonal conductors. The other denotes their absence. The 
structure seeds are repeated along the longitudinal direction, 
constructing the entire structure.  

 
(a) 

 
(b) 

 

 

(c) 

Fig. 1 Geometry of a 3D interconnect structure (a) End 
view. (b) Side view. (c) Top view. 

Next, we perform full-wave modeling of each structure 
seed. Here, in contrast to the common practice of analyzing 
interconnect structures by formulating a deterministic problem; 
we construct an eigen-value based method. This is in light of 
the fact that the electrical properties of interconnects are 
intrinsic in nature irrespective of the excitation. 

The electric field E in an interconnect structure satisfies the 
second-order vector wave equation  

 

subject to certain boundary conditions such as 

 

 

In (1), µr, εr, and σ denote the relative permeability, relative 
permittivity, and conductivity respectively. The incorporation 
of conductivity σ allows for the accurate modeling of both 
conductor and dielectric loss. This is of great importance for 
the accurate simulation of on-chip interconnects in which skin 
effects are dominant, and off-chip ones in which both skin 
effects and dielectric losses are important. By applying 
variational principle, it can be demonstrated that solving the 
boundary-value problem defined by (1) and (2) is equivalent to 
seeking the stationary point of the following functional [10] 

 

where εr with over-bar refers to the complex relative 
permittivity which comprises  εr and σ.  

Each structure seed has a constant cross-section, and hence 
inside of which wave propagating along longitudinal direction 
is analytical. Therefore, the z-dependence of all field 
components is e-γz. With this, (3) can be rewritten as  

 

 

Where ∇t denotes the transverse del operator, Et represents 
the transverse component of the electric field, and Ez signifies 
the z-component of the field.  

To seek the solution of the above variational problem, the 
computational domain Ω is subdivided into small triangular 
elements. The transverse field within each element is expanded 
as 

 

where n denotes the number of basis functions per element, 
and Ni and eti denote the vector expansion functions, and 
corresponding expansion coefficients respectively. In this 
paper, edge basis functions [10] are employed to expand the 
tangential field. The longitudinal field is represented by node 
basis functions ςi   

 

in which ezi is the corresponding expansion coefficient. The 
final discretization of the variational problem (4) results in a 
generalized eigenvalue problem  

 

 

in which A and B are complex matrices. Obviously, the 
eigenvalues of the above matrix system correspond to the 
propagation constants, whereas the eigenvectors characterize 
the transverse and longitudinal fields. Once (7) is solved, the 
electric field in each structure seed can be obtained as 

 

       

which is a superposition of all of the forward and backward 
propagation modes that can be supported by the structure. It 
should be noted that the E field in (8) has all three components 
Ex, Ey, and Ez.  

Finally, we determine the unknown coefficients αm, βm by 
imposing field continuity condition at each junction. As an 
example, consider the junction in the following figure, which 
separates regions I and II. 

 

 

 

 

 

Fig. 2 Illustration of a junction discontinuity in a 3D 
interconnect structure. 

In region I, there are M1, M2, M3, M4, and M5 layers, 
whereas in region II, only M2, M3, and M5 are present. The 
electric field in region I can be represented into 
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in which        , and M denotes the 
number of modes. Similarly, the electric field in region II can 
be written as  

 

in which                 , and N denotes the 
number of modes in region II. To impose field continuity 
condition at each junction, we can resort to the mode matching 
technique [12]. However, the conventional mode matching 
technique only applies to lossless system. Whereas, 
interconnect structures especially on-chip interconnects are 
highly lossy due to the conductor loss and the low working 
frequency. This problem was solved by developing a novel 
mode matching technique valid for lossy systems in this paper. 

Solution of the fields enables the calculation of circuit 
parameters. S-parameters and per unit length transmission line 
parameters are typically of interest to circuit designers. 
Transmission line description is only valid when quasi-static 
assumption holds true and the structure is pure 2D in nature. If 
the structure is 3D in nature, a single transmission line cannot 
represent its equivalent circuit. In contrast, the S-parameters are 
always applicable to both low and high frequencies, and 2D/3D 
structures.  

When the transmission line model is valid, the RLGC 
parameters can be extracted in the following fashion. First, we 
obtain the eigen-voltage and eigen-current of each conductor 
for each mode by performing the following line or area 
integrals  

       
      (11) 

 

where m denotes the index of mode; i denotes the index of 
conductor; em,t(x, y), and  em,z(x, y) represent the tangential, and 
longitudinal electric field of the m-th eigen-mode respectively. 
Substituting (11) and propagation constant γm into the telegraph 
equation: 

 

      (12) 

 

 

we obtain the RLGC matrices. Note that in contrast to the 
RLGC matrices obtained via quasi-static solvers that employ a 
decoupled electric and magnetic field model, here, any 
coupling between E and H, no matter how weak, is captured 
accurately.  

For 3D interconnect structures or interconnects working at 
high frequencies, S-parameters become a necessity for an 
accurate description of their electrical behavior. Two 
approaches are commonly used in the full-wave area for S-
parameter extraction. One is to extract the S-parameters from 
the standing wave pattern on the feed line; while the other is to 
obtain the same from the reflected and transmitted fields. 
Instead of adopting either of these methods, here, we propose a 

more convenient circuit-based S-parameter extraction 
technique. Basically, we first construct the total voltage and 
current of each conductor at the ports of an interconnect by 
performing the following integrals:  

 

 

       
     

Then we load each conductor by the reference impedance 
(usually 50Ω in industry standard), and excite the conductor in 
turn, which can be mathematically represented as: 

      (14) 

       

The loading condition in (14) together with the boundary 
condition at each junction yield the solution of unknown 
coefficients αm, βm, and hence the total voltage and current of 
each conductor. As a result, the S-parameters can be obtained 
as follows: 

 

 

It is worth mentioning that the eigen-system (7) only needs 
to be solved for each unique structure seed, whose number is 
many orders of magnitude less than that of the segments. To 
further speed up the numerical simulation, we also developed a 
series of acceleration techniques such as fast eigen-value 
solution, junction matrix acceleration scheme etc. These 
techniques will be published in the future.  

III. NUMERICAL RESULTS  
To test the accuracy of the proposed algorithm, we 

simulated and measured a set of interconnect structures that 
were fabricated on a test chip using conventional Si processing 
techniques. Although the test structures involve thousands of 
conductors, due to the efficiency of the proposed scheme, 
simulations in the 0-50 GHz range were completed in just 
minute using a 700MHz Personal Computer. High resolution 
cross-sectional Scanning Electron Microscopy and Optical 
Microscopy were used to measure the relevant dimensions of 
the fabricated structures. Parasitics signals were removed from 
the measured S-parameters using a de-embedding approach. 
Figure 3 compares measured and simulated S-parameters of an 
on-chip interconnect fabricated on a three-metal-layer testchip, 
and shows an excellent agreement both in magnitude and 
phase.  

Fig. 4(a) compares the simulated and measured crosstalk of 
an on-chip interconnect. Again, it shows an excellent 
agreement between experiments and simulations. Fig. 4(b) 
depicts the current distribution on a sliced cross section at 
40GHz with the excited signal on the left in the M2 layer. The 
current induced on surrounding conductors exhibits a complex 
pattern, which reflects the mutual coupling among these 
conductors. In addition, we observe return currents in the lossy 
silicon substrate. The current nulls observed in the substrate are 
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due to the destructive interaction between reflected and 
transmitted waves.  
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Fig. 3 S-parameters of a 3D on-chip interconnect. (a) 
Magnitude. (b). Phase. 

IV. CONCLUSION 
This paper presents a novel fast full-wave modeling 

technique for large-scale 3D high-speed on- and off-chip 
interconnects. This technique formulates a generalized 
eignvalue formulation of the original wave propagation 
problem that can comprehend arbitrary dielectric and conductor 
configurations, both conductor and dielectric losses, and 
arbitrary materials. A mode matching technique valid for lossy 
systems is developed to solve large-scale 3D problems with 
2D-like computational expenses. A comprehensive 
characterization of the interconnect is conducted, which 
includes the extraction of S-parameters, full-wave RLGC, 
propagation constants, characteristic impedances, voltage, 
current, and field distributions. Comparison of numerical with 
experimental results demonstrates its validity. The proposed 
technique has also been extended to time domain, the detail of 
which will be reported elsewhere.  
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