1-1 (Plenary)

Perspectives in Microscopic Carrier Transport

Tsuneya ANDO

Department of Physics, Tokyo Institute of Technology
2-12-1 Oockaysma, Meguro-ku, Tokyo 152-8551, Japan
E-Mail: ando@stat.phys.titech.ac.jp

A brief review is given of recent investigation
of transport properties of nanostructures from
semiconductor quantum wires and dots to artifi-
cial crystals with exotic electronic properties in-
cluding carbon nanotubes as an example.

1. INTRODUCTION

The development of crystal-growth and lithography
technology in last ten years has made it possible to fab-
ricate artificial structures with nano meter size compara-
ble to the wavelength of electrons, excitons etc. and even
down to atoms and molecules. Various tools for accu-
rate characterization and observation of such structures
have been developed as well as those for precise mea-
surernent of their detailed physical properties. In such
small-size systems, rich phenomena have been observed,
many of which are important also from the point of view
of fundamental physics. This in turn offers challenges to
fabricate further novel structures. The purpose of this
paper is to discuss some examples of recent developmen-
t and future outlook in the investigation of transport
properties of these systems.

II. MESOSCOPIC TRANSPORT
A. Semiconductor Quantum Structure

Mesoscopic structures are fabricated frequently us-
ing two-dimensional (2D) systems. A typical 2D sys-
tem called an inversion layer is realized at a metal-
oxide-semiconductor structure, where the integer quan-
tum Hall eflect was discovered. A semiconductor super-
lattice can be fabricated using the crystal growth tech-
nique such as molecular beam epitaxy and metal-organic
chemical vapor deposition. The motion perpendicular to
the interface is quantized and a 2D electron system is
realized using the so-called modulation doping in which
only the barrier layer is doped with donors. The supreme
quality of the heterointerface has made this system ideal
and the mean free path can be as large as 100 pm, which
made the fractional quantum Hall effect observable.

One important length scale is the Fermi wave length
Arp. When a 2D electron is confined into a wire with
width W, for example, the motion perpendicular to the
wire is quantized into discrete energy levels and the
states consist of one-dimensional (1D} subbands. For an
abrupt confinement potential, the energy levels are given
by By, =(h?/2m)(rn/W)? withn=1,2,.... The number
of occupied 1D subbands below the Fermi energy, called
a channel number, is obtained as n=[2W/Af]. Similar
discussion is possible for quantum dots.

In such systems, electrons are confined by an artificial
potential and their electron number or density can be
almost freely controlled. They are new quantum many-
body systems in which both quantum effects and those of

mutual interactions are quite strong. A typical example
of the manifestation of interactions can be found in the
so-called Tomonaga-Luttinger liquid and the Coulomb
blockade in quantum dots, dot or antidot lattices, etc.

In macroscopic regimes, the system size is much larg-
er than the phase coherence length, while it is much s
maller in microscopic systems. One fundamental and
crucial problem on the transport is the crossover from
macroscopic to microscopic transport, in particular, the
theoretical treatment of phase breaking processes when
relevant length scales are all comparable. This problem
will not be discussed further in this paper because of the
space limitation, however.

B. Ballistic Transport

One most typical example of ballistic transport is the
conductance quantization in quantum point contacts in
which the conductance changes like a step function with
the increase of the gate voltage [1]. Each step with height
e2/mh corresponds to the opening up of a new conducting
channel. One typical phenomena showing the ballistic
electron motion is the so-called magnetic focusing, in
which electrons emitted from a quantum point contact
are efficiently collected by another point contact onto
which electrons are focused following a cyclotron orbit
[2]. The ballistic motion manifests itself in quantum
wires and crossed wires as a negative bend resistance, a
transfer resistance [3], and a quenching and last plateau
of the Hall resistivity [4].

C. Quantum Dot and Single-Electron Tunneling

When electrons are trapped into a finite region like
quantum dots, the charging energy plays a important
role. The Coulomb energy for a dot containing IV elec-
trons has a term proportional to N(N —1)e?/2 corre-
sponding to the number of electron pairs interacting with
each other. There are positive charges +Ne somewhere
which ensure the charge neutrality and the interaction
with them leads to a term proportional to N. Therefore,
the total energy is given by Ex = (Q?/2C) — aeQVg,
where @ = —eN, C i3 a capacitance, Vs is a gate volt-
age, and « is a dimensionless constant,

The equilibrium number N of electrons is determined
by the conditions Uy > 0 and Uy_1 < 0 with Uy =
Epn1—En. The typical energy required for changing the
electron number is given by (Un-+HUn-1|}/2~e?/C. The
tunnel current across the dot sandwiched by a source and
drain electrode through a thin tunnel barrier is generally
prohibited at sufficiently low temperatures kpT < e?/C.
This is called the Coulomb blockade. At an appropriate
gate voltage, AUy vanishes and an electron can tunnel
into and out of the dot freely. While the dot contains
an extra electron or charge and until the extra charge
disappears from the dot, no other electrons can enter



the dot because of the charging energy. Therefore, this
tunneling is called a single electron tunneling (SET).

Omne most typical example of SET devices is a turn-
stile consisting of a series of two quantum dots [5]. We
first apply a certain source-drain voltage in such a way
that the tunnel current is prohibited through both quan-
tum dots. When we lower the voltage of the central
region between two dots, an electron tunnels into a dot
from an electrode but cannot tunnel out to the other elec-
trode because of the Coulomb blockade of another quan-
tum dot. When we raise the voltage, the extra charge
—e stored in the central region tunnels out into the oth-
er electrode. In this way the charge —e moves from one
electrode to other per cycle. The current is determined
by e and the frequency of the voltage modulation, which
therefore can be used as a current standard.

D. Artificial Atom and Molecule

In a small dot containing just a few electrons, both
electron-electron interactions and quantum confinement
effects become sufficiently strong to cause a significant
modification of the Coulomb oscillation. Such a system
can be regarded as an artificial atom [6]. In contrast to
the case of a dot containing many electrons the conduc-
tance exhibits a Coulomb oscillation as a function of the
gate with irregular spacing corresponding te the fact that
the addition energy varies sensitively as a function of the
number of electrons due to effects of electron-electron in-
teraction and orbital quantization. This behavior can be
understood well by a shell filling and Hund’s rule analo-
gous to the case of atoms in periodic tables. By combin-
ing two or more artificial atoms, artificial molecules can
be realized [7]. For a dot with nonzero spin, a singlet
coupling with electrons in a surrounding reservoir gives
rise to a Kondo effect [8].

III. TOWARD ARTIFICIAL CRYSTAL
A. Quantum-Wire Array

We can impose artificial potential (electrostatic or
magnetic) on a 2D electron gas. The potential period can
range from the order of 10 A by using the cleaved edge
overgrowth technique to the order of 0.5 ym in systems
with a patterned gate. Magnetotransport under a peri-
odic potential shows oscillation arising from the geomet-
rical resonance depending on the commensurability con-
dition between the lattice periodicity and the cyclotron
orbit [9]. In a periodic potential electron-electron scat-
tering can contribute to the resistivity through Umklapp
processes not conserving the total electron momentum.
The resulting T2 increase of the resistivity was observed
[10] and analyzed theoretically [11].

B. Antidot Lattices

A typical artificial lattice consists of arrays of anti-
dots with circular repulsive potential. The system is
characterized by the diameter d of an antidot and the
period a. Such a lattice system is known to comprise
with self-similar energy levels called Hofstadter’s butter-
fly in magnetic fields {12], which are expected to give rise
to intriguing electronic properties. The classical electron
in the system is usually chaotic. Antidot lattices are one
of such systems that the chaos plays importans roles in

their transport properties and a crossover between clas-
sical and quantum regimes can be realized.

Commensurability peaks were observed in the resis-
tivity in weak magnetic fields 2R, =~ a where E, is the
cyclotron radius [13]. In the limit of small aspect ratio
d/a < 1, the electron loses its previous memory when
it collides with an antidot and antidots are nothing but
independent scatterers. In magnetic fields, the transport
is possible through the migration of the center of the cy-
clotron motion. The scattering on an antidot cannot give
rise to diffusion when 2R, < g and starts to contribute
to the conductivity when 2R, > a—d. The migration
occurs most frequently due to successive scattering from
nearest-neighbor antidots at the magnetic field 2R, =a
because the measure of such orbits becomes maximum
in the phase space due to a magnetic focusing effect [14].

A fine oscillation was observed superimposed on com-
mensurability peaks [15,16]. The period is roughly given
by AB~®g/a* with ®g=ch/e being the magnetic flux
quantum. This oscillation has been analyzed in terms of
the periodic orbit theory giving a semiclassical quantiza-
tion in chaotic system and has been shown to be closely
related to quantized energy levels associated with a pe-
riodic orbit encircling a quantum dot.

C. Dot Arrays and Exotic Lattices

With the use of dot and antidot arrays, it is possible
to fabricate 2D crystals with arbitrary structure. Some
energy bands in a so-called Kagome lattice are known
to be independent of the wave vector. Such flat-band
systems can have a ferromagnetic ground state according
to a known exact theorem. There has been a suggestion
that ferromagnetism is realized in dot arrays if their
parameters are appropriate [17]. A flat-band system can
be realized in a finite-width honeycomb lattice giving rise
to peculiar edge states [18]. The basic lattice structure

- of high-T¢ cuprates is the 2D square lattice and a model

system may be realized by dot arrays which exhibits
superconductivity due to electron-electron interactions.

A heneycomb lattice is another interesting crystal
exhibiting unique properties. A unit cell contains two
carbon atoms denoted by A and B as shown in Fig.
1. Two bands having approximately a linear dispersion
cross the Fermi level at K and K’ points of the Brillouin
zone. The effective-mass Hamiltonian for the K point is
given by

o k)F(r) = eF(r), F(r)-—-(FA(T)), 3.1)

Fp(r)
where o = (04, 0y) is the Pauli spin matrix, v is a
band parameter, k = —iV, and F4 and Fg represent

the amplitude at two carbon sites A and B, respectively
[19]. The above equation is same as Weyl's equation
for a neutrino with vanishing rest mass and constant
velocity independent of the wave vector. The energy
becomes g,(k) ==17v|k| The velocity is given by |v|=~/h
independent of k and e. The density of states becomes
D(e) =le|/2n+%. Figure 2 shows the energy dispersion



Figure 1: The structure of a honeycomb lattice, A
unit cell contains two atoms denoted as A and B
(small circles). It can be realized by fabrication of a

short-period hexagonal antidot array (shadowed big
circles).

and the density of states.

An important feature is the presence of a topological
singularity at & =0. A neutrino has a helicity and its
spin is quantized into the direction of its motion. The
spin eigen function changes its signature due to Berry’s
phase under a 27 rotation. Therefore the wave function
acquires phase —7 when the wave vector k is rotated
around the origin along a closed contour [20,21]. The
signature change occurs only when the closed contour
encircles the origin k=0 but not when the contour does
not contain k= 0. This topological singularity at k=0
causes a zero-mode anomaly in the conductivity [22,23].
It gives rise to the absence of backscattering and perfect
conductance in metallic carbon nanctubes.

IV. CARBON NANOTUBES

The electronic states of a carbon nanotube can be ob-
tained by imposing periodic boundary conditions in the
circumference direction except in extremely thin tubes,
i.e., ¥(r+ L) =¢(r), where L is called the chiral vec-
tor and corresponds to the circumference of a nanotube.
The angle n of L measured from the horizontal direction
in Fig. 1 is called the chiral angle. Carbon nanctubes can
be either a metal or semiconductor, depending on their
diameters and helical arrangement. These conditions can
be well reproduced in this k-p scheme {19].

In the k-p scheme, electrons in a nanotube can be
regarded as neutrinos on a cylinder surface with a fic-
titious Aharonov-Bohm {AB) magnetic flux determined
by L. In metallic tubes, the flux vanishes and F satisfies
periodic boundary conditions, while in semiconducting
tubes, conditions for F'include a nonzero AB phase. The
scheme has been used successfully in the study of wide
varieties of electronic properties. Some of such exam-
ples are magnetic properties [24] including the AB effect
on the hand gap, optical absorption spectra [25}, exci-
ton effects [26], lattice instabilities in the absence [27,28]
and presence of a magnetic field [29], magnetic proper-
ties of ensembles of nanotubes [30], effects of spin-orbit
interaction [31], junctions [32], vacancies [33], topological
defects [34], and properties of nanotube caps [35].

The nontrivial Berry’s phase leads to the unique prop-
erty of a metallic nanctube that there exists no back-
scattering and the tube is a perfect conductor even in
the presence of scatterers {21,36]. This has been demon-
strated also by the conductance finite-length nanotubes

D(e)

Figure 2: The energy dispersion and density of siates
in a honeycomb lattice.

containing many impurities [36] and by a tight binding’
calculation [37].

Backscattering corresponds to a rotation of the k
direction by 7. In the absence of a magnetic field,
there exists a time reversal process corresponding to each
backscattering. This process involves a rotation by £m
in the opposite direction. The scattering amplitude of
these two processes has an opposite signature because of
Berry’s phase and cancels out each other completely. In
semiconducting nanotubes, on the other hand, backscat-
tering appears because the symmetry is destroyed by a
nonzero AB magnetic flux.

An important information has been obtained on the
mean free path in nanotubes by single-electron tunneling
experiments [38,39]. The Coulomb oscillation in semi-
conducting nanotubes is quite irregular and can be ex-
plained only if nanotubes are divided into marny separate
spatial regions in contrast to that in metallic nanotubes
[40]. This behavior is consistent with the presence of
backscattering leading to a localization of the wave func-
tion. In metallic nanotubes, the wave function is extend-
ed in the whele nanotube because of the absence of back-
scattering. With the use of electrostatic force microscopy
the voltage drop in a metallic nanotube has been shown
to be negligible [41].

At nonzero temperatures, lattice vibrations usually
constitute the major source of electron scattering and
limit the resistivity. Usually long-wavelength acoustic
phonons, described by a continuum model [42], are most
important. A phonen gives rise to a deformation po-
tential Vi = g1(uss +2%yy) 28 a diagonal term, where u
represent lattice displacements. It causes also a change
in the distance beiween neighboring atoms, which gives
rise to an off-diagonal term Va = gae® (uy, —Uyy+2uzy)
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Figure 3: The Fermi-energy dependence of the con-
ductivity for metallic (solid line) and semiconducting
(broken line) nanotubes with gy/g2=10. 04(0) is the
conductivity at vanishing Fermi energy [43].



where go is much smaller than gy.

The diagonal term does not contribute to the back-
scattering as in the case of impurities and only the much
smaller off-diagonal term has some contribution. The
mean free path is estimated as ~ 600L with L =|L| at
room temperature, which is larger than 1 um for thin
armchair nanotubes with diameter ~1.5 nm and increas-
es in proportion to L with L. This shows that a metallic
nanotube is ballistic even at room temperature. The
situation changes dramatically when other bands start
to be occupied. Figure 3 shows the Fermi energy depen-
dence of the conductivity obtained by solving Boltzmann
equation [43].

V. SUMMARY

In summary, a brief review has been given of recent
investigation of transport properties of nanostructures
from semiconductor quantum wires and dots to artificial
crystals. By designing various artificial structures like
honeycomb or other lattices, it is possible realize exotic
electronic properties. Carbon nanotubes can be regarded
as one of such typical examples.
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