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Abstract 

It has been established [I]-[4] that the density gradient (DG) model is the low- 
est order, in terms of h, approximation of the Wigner function approach to in- 
cluding quantum mechanical (QM) effects in carrier transport. In this paper, we 
report a five-equation PDE system (reduced to three-equation at thermal equi- 
librium) which preserves the numerical stability of classical drift-diffusion (DD) 
model, yet faithfully manifests QM corrections. Tunneling through the gate ox- 
ide (or barrier region) is modeled by ballistic transport with each type of carrier 
(electrons or holes) further split into forward and backward moving species and 
solved for separately. The entire device, including semiconductor and barrier re- 
gions, is solved self-consistently. Terminal characteristics, either dc or small signal 
ac, for realistic, multi-dimensional device structures can be simulated using this 
model. An SO1 device example is simulated and the comparison with microscopic 
(SchrodingerlPoisson) results is excellent. A DG prediction of a dipole in the poly 
gate near the polylgate-oxide interface is also confirmed by microscopic simulation. 
Both I - V  and C-Vfor MOS devices including SO1 are shown. 

1 Introduction 

Quantum mechanical (QM) effects in semiconductor devices are manifestations of the 
wave nature of highly confined electrons. For scaled MOSFETs, two QM effects are 
most prominent: 

1. Quantum confinement in the inversion or accumulation layer in the substrate ad- 
jacent to the Si-Si02 interface. 

2. Tunneling through the thin gate oxide (for thicknesses below approximately 
2nm). 

An "exact" analysis of these phenomena requires quantum mechanics. In its simplest 
form, a microscopic treatment of the confinement effects involves an equilibrium prob- 
lem in one-dimension and can be solved using the Hartree approximation. This is the 
conventional approach; one finds that the energy bands split into discrete sub-bands 
with the wave functions associated with each energy level spread over the breadth of 
the well. Because of the large chemical potential barrier at the Si-SiOz interface, the 
wave functions essentially vanish at that interface; the peak carrier concentration is thus 
located away from the substrate surface. Qualitatively, all of this remains true in a real 
device but the details change because the device is actually three-dimensional, and the 
degree of confinement varies with position along the channel. 



The microscopic treatment of gate tunneling is even more problematic because it 
is in essence a non-equilibrium problem. One-dimensional, one-electron treatments 
have long been used but these lack self-consistency. Much more sophisticated one- 
dimensional treatments such as those based on non-equilibrium Green's functions [6] 
capture the physics quite well for one-dimension but are too computationally demand- 
ing to be extended to multiple dimensions and to be used for everyday engineering 
analysis. 

For many important problems there is a way out of this dilemma that comes with the 
recognition that a full-scale treatment of the quantum mechanics is overkill. For MOS 
scaling problems, quantum interference phenomena are typically not important. Fur- 
thermore, in many device situations, a large number of the sub-bands are filled. There- 
fore, the details of sub-band structure have little consequence. This is the motivation 
for developing a macroscopic transport model with the lowest-order QM corrections. 
One such approach is the so-called density gradient (DG) model [I]. 

2 The evolution of DG model from Wigner function approach 

The DG model can be developed using either macroscopic arguments [2J or from quan- 
tum mechanics [I]. The macroscopic approach introduces lowest-order effects of non- 
locality by having the internal energy of the electron gas depend not only on the density 
of electrons, but also on the gradient of the density. Alternatively, one can derive the 
DG model from the Wigner function, which is the probability density function of par- 
ticles in real and momentum space. The Wigner function is constructed from the wave 
function as [7] 

where p is the momentum, 9 is the wave function, and 1 is the dimensionality, e.g., for 
3D, I = 3. One can view the above expression as a partial Fourier transform of the 
density matrix. 

The Wigner function is real, but not necessarily positive, which poses difficulties if 
it is used directly to find carrier concentration, etc. To derive the DG model from the 
Wigner function, one notes that if 9 is the solution to the Schrodinger equation then the 
Wigner function must satisfy 

where U is the potential, and all other symbols have their conventional meaning. By 
utilizing only the lowest order term of the series expansion in the above equation, one 
obtains 



Or under further assumptions such as isotropic effective mass, this equation can be 
recast as 

This equation is called the quantum corrected Boltzmann transport equation (QBTE) 
because of its close resemblance to the conventional Boltzmann transport equation 
(BTE). In fact, by comparing the above equation to the conventional BTE and tak- 
ing the zeroth moment of the equation, one gets a carrier continuity equation which is 
identical to the classical drift-diffusion (DD) model, except that the carrier flux now has 

where 
b, = h2/(41qrn;) 

where 1 can again be viewed as the space dimensionality (although it needs not be an 
integer value). The additional term in the drift part of the model is due to the quantum 
correction and is sometimes lumped into the potential with the term 

being the so-called quantum potential. Note that the unusual ,hi enters this expression 
by virtue of the transformation 

3 DG model formulation 

3.1 Five-equation set in semiconductor regions 

The quantum correction of DG theory obviously raises the order of the differential 
system, and in order to avoid higher order (no higher than 2) spatial mathematical op- 
erators, the carrier continuity equation (for either electrons or holes) is split into two 
equations with two independent variables, n and 4,. Thus, the conventional DD set 
of semiconductor equations, which include Poisson's equation and the carrier continu- 
ity equations, is expanded from three to five equations, all being second order PDEs. 
The following five-equation PDE system is solved for in terms of the five independent 
variables, $, fi (or n ) ,  JiT (or p), $,, and $ p :  



where r is the net electron-hole pair recombination rate. Even though Maxwell- 
Boltzmann (MB) statistics are assumed here, Fermi-Dirac (FD) can easily be imple- 
mented. The boundary conditions for the above system of equations are the same as in 
DD except that there are explicit boundary conditions that are associated with Eqs. ( 1  0- 
11). 

There are two special cases in which the above general equation set can be simpli- 
fied: 

I .  Thermal equilibrium. Since the quasi-Fermi levels are known (being zero), 
Eqs. (12-13) can be dropped and the system reduces to a three-equation set to 
be solved for the carrier density and potential distributions. 

2. Classical case. With bn = b, = 0 (or h + 0). Eqs. (10-13) can be combined to 
reduce to the electron/hole continuity equations of DD theory. 

The above equation set is readily solved without stabilization by discrete methods, 
e.g. finite differences, finite volume, or finite element. A noticeable difference from 
the classical DD model, however, is that the p n  product at the thermal equilibrium is 
no longer equal to n:, i.e., nope # n; in the bulk of the semiconductor region. This 
requires the use of different models for recombination effects than those used with 
classical DD [8]. 

3.2 Equation set in barrier region for tunneling 

If tunneling is permitted in barrier regions such as the gate oxide, then one must solve 
carrier equations in these regions too. We consider only elastic tunneling and therefore 
the mobility vanishes and the transport is ballistic. Elastic tunneling further implies that 
carriers (electrons or holes) entering from either end of the barrier do not mix and must 
therefore be treated separately as shown in Fig. 1 (a). There are thus four independent 
carrier concentrations to be solved for in the barrier region: two electron populations, 
n and u ,  and two hole populations, p  and b. Ballistic transport implies that inertia is 
important. The variables of the problem are the four carrier densities, their respective 
quasi-Fermi levels and velocities, together with the electrostatic potential. Thus, the 
number of unknowns in the barrier region is thirteen in principle, for which we must 
have thirteen equations. But in the one-dimensional case, various approximations can 
vastly reduce the complexity of the system as well as the number of equations to solve. 
For details, refer to [8]. 

The electrostatics is governed by Poisson's equation (assuming no fixed charge in 
the oxide) which is 

V . ( - E O $ )  = q ( p + b - n - u )  (14) 

where $ is assumed continuous across the oxidelsilicon interface. 
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Fig. 1: Modeling and simulation of tunneling in DG framework. 

The carrier flux in the barrier region is expressed as 

where v,, is the carrier velocity for forward electrons. The equations solved for n and 
v, are: Eq. (1 O), with the density dependent term, kT/q ln(n/n,), replaced by a general 
dependence of n, for rz and the carrier continuity equation for v,, 

The equation for 4, is the following equation of motion, 

Under steady state conditions the equations for the forward-going electrons are the 
following three equations to be solved for the three independent variables: rl, $,,, and 
vn, 

where in Eq. (18) we have left the density-dependent part of the equation of state un- 
specified, using a generic function form g(n)  instead. It is probably the best choice to 
use an adiabatic expression (rather than the MB or FD forms). 



To derive the boundary conditions for n and 4,, we illustrate using the one- 
dimensional case with a barrier extending from 0 to to, and carriers launched into 
the banier the directions shown in Fig. 1. The boundary conditions on these forward- 
electrons are 

where the subscript, TRV, indicates the tunneling recombination velocity. At the down- 
stream end (x = t,), the normal component of the gradient of both carrier concentra- 
tion and quasi-Fermi level is assumed to be zero [ 8 ] .  

Equation (26) involves the currents in the barrier region and as discussed in [ 5 ]  these 
are modeled by tunneling recombination velocity conditions that describe how the car- 
riers that are accelerated across the barrier by the electric field recombine with the equi- 
librium carrier population at the downstream end. In the above equations, Eq. (21) is 
simply a statement that carrier concentration is continuous across the material interface 
for carriers at the upstream end (i.e., n(O+)). Eq. (23) states that the quasi-Fermi level 
is continuous across the upstream interface. Eq. (25) refers to the continuity condition 
of the carrier flux across the interface. 

3.3 Interfacial boundary conditions in multi-layer structures 

The proper specification of boundary conditions (BC) at material interfaces such as the 
Si/SiOz interface is critical to a robust numerical implementation of the DG model. For 
problems without tunneling, these interfacial BCs are 

1.  Continuity of @ across the interface. 

2. Vanishingly small carrier densities on the semiconductor side of the semiconduc- 
torlinsulator interface (in practice a small but non-zero value is specified.) 

3. Zero normal component of V4, and V4, across the semiconductorlinsulator 
interface. 

4 Implementation and examples 

4.1 Model implementation 

The above five-equation system has been implemented in PROPHET, a general PDE 
solver that provided user-specification of PDEs and boundary conditions via a high- 
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Fig. 2: Simulated C-Vfor a MOS capacitor and I-V for an SO1 MOSFET. 

level scripts language, and simulations have been performed for various 1/2/3D MOS 
structures. Full Newton-Raphson iterations are used to obtain the solution, providing 
the Jacobian necessary for frequency-dependent small signal ac analysis. The conver- 
gence rate is acceptable. 

At the present time, tunneling current through a thin oxide has been demonstrated 
in a separate code [8] and the accuracy of the simulation is demonstrated in Fig. 1 (b). 

4.2 Simulation examples 

Two simulation examples are provided: quasi-static ac analysis of a I D  MOS capac- 
itor and dc analysis of a 2D SO1 MOSFET with the thickness of the silicon thin film 
varying from 3 to 20 nm and above. The latter simulation results are also compared to 
Poisson/Schrodinger equation solutions to establish their accuracy. 

Fig. 2 (a) shows a simulated C-Vcurve for a MOS capacitor, comparing the classical 
DD model with the quantum corrected DG model. The DG model predicts a higher 
threshold voltage and a lower capacitance in both the accumulation and inversion re- 
gions. The C-V curve is smooth including in the flat band region where other simula- 
tions techniques often have difficulty in achieving convergence due to model singulari- 
ties. 

The second example analyzes an SO1 MOSFET. Fig. 2 (b), shows the comparison of 
I-V characteristics. To achieve a similar drain current using conventional DD solutions, 
the "effective" gate oxide thickness would be 7.6A thicker than that of the physical 
one. This order of to, "correction" is in agreement with other observations, e.g. [9]. 
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Fig. 3: Simulated electron distribution in the poly gate and channel in the linear bias region 
( V d ,  = 50 mV and V,, = 2 V) for an SO1 MOSFET. Comparison is made between applying DG 
in all device regions and applying DG only to the silicon film/substrate. 

Fig. 3 shows the electron distribution in the poly gate region and in the channel for 
the DG solutions. One distinctive feature of the simulation results is that there is a 
dipole in the poly gate region near the polyloxide interface. This dipole is a result of 
the physical requirement of quasi-charge neutrality under flat band condition and the 
repulsion effect of the large Si02 barrier. The negative charge of the dipole is due to 
the pile up of electrons over the background doping. The existence of this dipole has 
been independently verified by NEMO [6], a program solving Schrodinger equation 
consistently. Finally, in Fig. 4 the simulated electron profile in the active region for 
silicon film thickness from 5 to 20 nm is compared with those from SCHRED, a Poisson 
and Schrodinger equation solver written by Professor D. Vasileska of Arizona State 
University. The agreement is excellent. It is noteworthy that in order to get a smooth 
distribution of carriers, SCHRED has to include more than thirty subbands. 
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