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Abstract 

We derived a set of quantum mechanical balance equations for a closed elec- 
tric circuit represented by a closed region 0. These equations were numerically 
simulated to obtain information about global and local transport properties. In 
particular we studied a pure quantum wire at low temperature containing only 
acoustical phonons. We also investigated the influence of a single elastic scat- 
terer present in the quantum wire. 

1. Introduction 
In ref. [ I ] ,  it was argued that the reservoir concept is not suitable to set up a quantum 
transport formalism. An alternative approach was proposed based on the non-trivial 
topology of closed electric circuits. 

2. Derivation of quantum mechanical balance equations 
The electric circuit is represented by a closed region R in which the electrons are con- 
fined. The region R also contains a battery that is responsible for the electromotive 
force (EMF) caused by an externally applied voltage. In general electromagnetic fields 
(l?, i?) will be present. The one-electron wave functions and the field operators 6 van- 
ish at the circuit boundary @(?', t )  = 0 at dR. The electromagnetic fields l? and i? are 
related to a scalar and vector potential (@, A). The total Hamiltonian can be written as 
H = H ,  + I?p + H' where 

Eq, (1) represents the electron energy in the presence of internal potentials U and elec- 
tromagnetic fields, where = (-ih$ + eA)/m is the velocity operator. H~ and 
H' respectively represent the phonon bath energy and the electron-phonon interaction 
energy. The time evolution of operators in the Heisenberg picture is governed by the 
Heisenberg equation of motion i h g  = [B, H ]  . This equation of motion is used to 
derive a set of local balance equations for energy and momentum. Integration of these 
local balance equations over the region R and taking the steady-state ensemble average 
then results in the following set of global balance equations in the steady-state regime : 

1: 
I x  = ( [A, ,  HI ] )  = P(Ap,  T,) (2) 



where IV, is the power delivered by the battery, while @(Ap, T,) is the friction force 
arising from the phonons. The product IV, in Eq. (2) arises due to an integral theorem 
for closed electric circuits [2]. 

3. Solving the balance equations 

In order to solve the balance equations (2)-(3) in the steady-state regime we use first 
order perturbation theory to calculate the ensemble average of an arbitrary Hermitian 
operator ~ ( t )  in the Heisenberg picture 

where the superscript (0) denotes the interaction picture for operators. The total Hamil- 
tonian is divided into an unperturbed part & and an interaction part Hint. The initial 
density operator bo is not chosen to be the Gibbs-ensemble. Instead, it is taken to be a 
"boosted" initial density operator, i.e. 

Q 
The initial density operator bf is parameterized by P, = l /kBT, and Ap,  where Iq, 
is the current carried by the eigenstate Iq >. Physically, it represents a moving and 
non-interacting electron system and a free phonon system in thermal equilibrium. The 
line integral of the electric field in the region fl must be equal to the EMF, i.e. 

The independent variables Ap,  T, and V, are found by solving Eqs. (2), (3) and (7) in 
a self-consistent way. A similar approach was also used in hot electron transport [3,4]. 

4. Results 
First, we have applied the balance equation approach to a pure quantum wire with- 
out impurities. The confinement is taken to be very strong and only sufficiently low 
temperatures are considered, so that only the lowest subband has to be taken into con- 
sideration. The dissipative medium consists of acoustical phonons only. The physical 
parameters that were taken for the quantum wire are listed in table 1. In fig. 1 we show 
the results of a simulation where the current I and the electron temperature Te are plot- 
ted versus the voltage V, ranging between 0.1 mV and 1 V. Apparently there exists a 
threshold of approximately V, % 0.1V where the electron temperature Te starts to in- 
crease and where I shows a non-linear behavior. Beyond this threshold the simulation 
results are to be doubted, because for higher electron temperature we need to take into 
account more than one subband and optical phonons in order to ensure energy relax- 
ation. Next, we have studied the same quantum wire, but now containing one impurity. 
For the sake of simplicity we have modeled the impurity potential by a delta-function, 
i.e. U ( x )  = Uo6(x). Accordingly, the electric field consists of a homogeneous part EH 



Table 1 : Physical parameters 

CURRENT-VOLTAGE CURVE ELECTRON TEMPERATURE-VOLTAGE CURVE 

Fermi energy 
Lattice temperature 
Effective mass 
Lateral dimensions 
Wire length 
Sound velocity 
Deformation potential 
Mass density 

Fig. 1 : Pure quantum wire 

and a localized part E6 (x) = V6S(x). Due to Eq. (7) we have to require that the total 
voltage be equal to the sum of the homogeneous and localized voltage drop, i.e. 
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The results of the simulations are shown in fig. 2 where both the localized and the ho- 
mogeneous voltage drop are shown as a function of the transmission coefficient T(kF)  
at Fermi-level. The total voltage drop is taken to be 1 mV. For a weak impurity po- 
tential, i.e. T E 1.0 we obtain the same results as the pure quantum wire. The total 
voltage drop V, tends to the homogeneous voltage drop VH, while Vs -+ 0. As the bar- 
rier height Uo increases or the transmission coefficient T becomes smaller than 1, the 
homogeneous voltage drop decreases while the localized voltage drop increases. For a 
very large barrier height Uo >> 1, or T << 1.0, the total voltage drop gets equal to 
the localized voltage drop Vs, while no voltage drop goes into the homogeneous part. If 
we look at the resistance for decreasing values of T it seems that an "anomaly" occurs. 
Classically one expects a monotonic increase of the resistance when the barrier height 
increases. However, fig. 2 clearly shows that the resistance first decreases and subse- 
quently increases for T < 0.1. This phenomenon is due to the functional dependence 
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of the transmission coefficient T on the electron energy. 

VOLTAGE DROP VS. TRANSMISSION RESISTANCE VS. TRANSMISSION 

Fig. 2: Quantum wire with the presence of a delta-potential 

5. Conclusions 
The results we have obtained clearly show that the quantum mechanical balance equa- 
tion approach is able to investigate global as well as local transport properties. In par- 
ticular we demonstrated that the presence of an impurity in a quantum wire with strong 
confinement at low temperatures directly affects the spatial localization of energy dis- 
sipation. Moreover, this method resolves a longstanding problem of determining the 
spatial localization of energy dissipation in the presence of a potential barrier. In the 
future we will further apply the balance equation method to investigate spatially inho- 
mogeneous structures such as quantum point contacts and carbon nanotubes. 
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