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Abstract

We derived a set of quantum mechanical balance equations for a closed elec-
tric circuit represented by a closed region Q. These equations were numerically
simulated to obtain information about global and local transport properties. In
particular we studied a pure quantum wire at low temperature containing only
acoustical phonons. We also investigated the influence of a single elastic scat-
terer present in the quantum wire.

1. Introduction

In ref. [1], it was argued that the reservoir concept is not suitable to set up a quantum
transport formalism. An alternative approach was proposed based on the non-trivial
topology of closed electric circuits.

2. Derivation of quantum mechanical balance equations

The electric circuit is represented by a closed region  in which the electrons are con-
fined. The region £} also contains a battery that is responsible for the electromotive
force (EMF) caused by an externally applied voltage. In general electromagnetic fields
(E B) will be present. The one-electron wave functions and the field operators ¥ _van-
ish at the circuit boundary ¥ (F, t) = 0 at 0f2. The electromagnetic fields E and B are
related to a scalar and vector potential (P, A) The total Hamiltonian can be written as
H= H + Hp + H' where

i, = / dr (lmm+ V4 (U - eq>)¢+¢) | M

Eq. (1) represents the electron energy in the presence of internal potentials U and elec-
tromagnetic fields, where vV = (—7hV + eA )/m is the velocity operator. Hp and
H' respectively represent the phonon bath energy and the electron-phonon interaction
energy. The time evolution of operators in the Heisenberg picture is governed by the
Heisenberg equation of motion ih%—‘f = [\i/, H ] . This equation of motion is used to
derive a set of Jocal balance equations for energy and momentum. Integration of these
local balance equations over the region (2 and taking the steady-state ensemble average
then results in the following set of global balance equations in the steady-state regime :
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where IV, is the power delivered by the battery, while F(Au, . ) is the friction force
arising from the phonons. The product IV, in Eq. (2) arises due to an integral theorem
for closed electric circuits [2].

3. Solving the balance equations

In order to solve the balance equations (2)-(3) in the steady-state regime we use first
order perturbation theory to calculate the ensemble average of an arbitrary Hermitian
operator A(t) in the Heisenberg picture

(AW) = (AOW), - 1 / tdt'([x/i(")(t),ﬂl-‘ﬂ(t')b : @

]

where the superscript (0) denotes the interaction picture for operators. The total Hamil-
tonian is divided into an unperturbed part Hy and an interaction part H;,;. The initial
density operator gg is not chosen to be the Gibbs-ensemble. Instead, it is taken to be a
”boosted” initial density operator, i.e.

1 .
pF = exp(=B.(AF - ui)) exp (-BHp), )
) R 1
AF = He—Zé;'éqasgn(qu)Au. (6)

q
The initial density operator p¢ is parameterized by 8. = 1/kgT. and Apu, where I,
is the current carried by the eigenstate |¢ >. Physically, it represents a moving and
non-interacting electron system and a free phonon system in thermal equilibrium. The
line integral of the electric field in the region 2 must be equal to the EMF, i.e.

V€=7{E-df. )
C

The independent variables Ay, T, and V, are found by solving Egs. (2), (3) and (7) in
a self-consistent way. A similar approach was also used in hot electron transport [3, 4].

4. Results

First, we have applied the balance equation approach to a pure quantum wire with-
out impurities. The confinement is taken to be very strong and only sufficiently low
temperatures are considered, so that only the lowest subband has to be taken into con-
sideration. The dissipative medium consists of acoustical phonons only. The physical
parameters that were taken for the quantum wire are listed in table 1. In fig. 1 we show
the results of a simulation where the current I and the electron temperature 7', are plot-
ted versus the voltage V. ranging between 0.1 mV and 1 V. Apparently there exists a
threshold of approximately V, ~ 0.1V where the electron temperature T’ starts to in-
crease and where I shows a non-linear behavior. Beyond this threshold the simulation
results are to be doubted, because for higher electron temperature we need to take into
account more than one subband and optical phonons in order to ensure energy relax-
ation. Next, we have studied the same quantum wire, but now containing one impurity.
For the sake of simplicity we have modeled the impurity potential by a delta-function,
i.e. U(x) = Upd(x). Accordingly, the electric field consists of a homogeneous part E g
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Fermi energy €F 1 meV
Lattice temperature T 1K
Effective mass m, 0.1 m,
Lateral dimensions L,L, 10 nm
Wire length L 1 mm
Sound velocity Us 10% m/s
Deformation potential D 9eV
Mass density 20 10® kg/m®

Table 1: Physical parameters
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Fig. 1: Pure quantum wire

and a localized part E5(z) = Vs6(z). Due to Eq. (7) we have to require that the total
voltage be equal to the sum of the homogeneous and localized voltage drop, i.e.

-

]{E-dl:EHLI+%=VH+V5=LQ. (8)
C

The results of the simulations are shown in fig. 2 where both the localized and the ho-
mogeneous voltage drop are shown as a function of the transmission coefficient T'(k )
at Fermi-level. The total voltage drop is taken to be 1 mV. For a weak impurity po-
tential, i.e. T = 1.0 we obtain the same results as the pure quantum wire. The total
voltage drop V; tends to the homogeneous voltage drop Vi, while V5 — 0. As the bar-
rier height Uy increases or the transmission coefficient 7' becomes smaller than 1, the
homogeneous voltage drop decreases while the localized voltage drop increases. For a
very large barrier height Uy >> 1, or T' << 1.0, the total voltage drop gets equal to
the localized voltage drop Vs, while no voltage drop goes into the homogeneous part. If
we look at the resistance for decreasing values of T' it seems that an “anomaly” occurs.
Classically one expects a monotonic increase of the resistance when the barrier height
increases. However, fig. 2 clearly shows that the resistance first decreases and subse-
quently increases for T < 0.1. This phenomenon is due to the functional dependence



323

of the transmission coefficient T" on the electron energy.
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Fig. 2: Quantum wire with the presence of a delta-potential

5. Conclusions

The results we have obtained clearly show that the quantum mechanical balance equa-
tion approach is able to investigate global as well as local transport properties. In par-
ticular we demonstrated that the presence of an impurity in a quantum wire with strong
confinement at low temperatures directly affects the spatial localization of energy dis-
sipation. Moreover, this method resolves a longstanding problem of determining the
spatial localization of energy dissipation in the presence of a potential barrier. In the
future we will further apply the balance equation method to investigate spatially inho-
mogeneous structures such as quantum point contacts and carbon nanotubes.

Acknowledgment Part of this work is funded by the Flemish Institute for Science and
Technology (IWT), Flanders (Belgium).

References

[1] W. Magnus and W. Schoenmaker. Quantized conductance, circuit topology and
flux quantization. Phys. Rev. B, 61:10883, 2000.

[2] W. Magnus and W. Schoenmaker. On the use of a new integral theorem for the
quantum mechanical treatment of electric circuits. J. Math. Phys., 39:6715, 1998.

[3] X.L. Lei and C.S. Ting A new approach to non-linear transport for an electron-
impurity system in a static electric field. Journ. of Phys. C: Solid State Physics,
18:77-92, 1985.

[4] X.L. Lei and N.J.M. Horing Balance-equation approach to hot-carrier transport in
semiconductors. Int. Journ. Mod. Phys. B, 6:801, 1992,





