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Abstract 

The geometrical structure of electrodynamics is reviewed following the 
analogy with gravity. It is found that the vector potentials that represent 
magnetic fields can be identified as connections. As a consequence, these 
potentials should be assigned to the links of discretization grids. A ghost 
field is introduced to guarantee numerical stability in the solution scheme 
of solving electromagnetic field problems for interconnects and on-chip 
passives. 

1 Introduction 

Present-day integrated circuits are characterized by the down-scaling of device 
dimensions, the densification of device stacking as well as increased operation 
frequency. Furthermore, the integration of on-chip passive elements in the back- 
end process of the circuit design is a continuing activity. The high density device 
stacking combined with a higher clock frequency leads to unprecedented design 
difficulties because one needs to keep parasitic couplings below prescribed thresh- 
old levels (design rules). On the other hand, the integration of on-chip passives 
requires a detailed knowledge of the characteristic parameters such as the ca- 
pacitance, inductance and resistance. These global parameters can be regarded 
as effective parameters representing objects that are obtained from integrating 
a local, i.e. space-time dependent quantity. As such, these parameters will be 
sensitive to the frequency under consideration. 

In order to arrive at  a full chip design, a hierarchical approach is advocated. 
The design-rule checking is done by partitioning the design into blocks and 
within each block one may zoom in to the critical paths and to study these 
sections in greater detail. The less critical parts can usually be handled by 
lumped-element descriptions or transmission line theory. The critical paths are 
sometimes referred to as 'tunnels' [I]. 



At the deepest level, the simulation of the back-end structures should be done 
by a field-solver approach. However, the circumstances at this level 'are rather 
unconventional from a field-solvers point of view. 

We will summarize here the specific difficulties that a field solver should be able 
to deal with. Geometry (I) The structures that appear a t  this level are often 
essentially three dimensional. As a consequence, transmission-line theory is not 
applicable. Geometry (2) The patterns have a width and height of comparable 
size. Therefore, approaches that assume infinitely thin metallic layers are not 
justified from first principles. Materials (1) Metallic patterns will have finite re- 
sistivity and therefore the currents will flow with different densities in the metalic 
parts. These currents distributions are further modified by the skin effect and 
proximity effects if the frequency increases. Materials (2) Semiconducting mate- 
rials are moderately conducting. This has a serious impact on the determination 
of effective parameters. The slow-wave mode is a consequence of putting a thin 
oxide layer between the metallic conductor and the semiconducting material. 

Considering all the requirements listed above, we discuss in this paper a novel 
approach. Instead of building on existing approximation schemes derived from 
Maxwell's equations, we choosed to return to the Maxwell equations and to de- 
velop a solution scheme capable if dealing with the above problems. In addition 
it proves beneficial not only to return to the Maxwell equations, but also to care- 
fully trace the physics that is hidden in the various symbols. In particular, the 
'physical' identification of the vector potential is crucial for a successful numer- 
ical implementation. There exists an intimate connection between differential 
geometry and electrodynamics that we have to exploit in order to perform this 
task. 

2 The geometry of electrodynamics 

Electrodynamics was discovered as a phenomenological theory. Starting from 
early experiments one arrived after considerable effort at Gauss' law, Biot- 
Savart's law and Faraday's law of induction. Only Maxwell's law was obtained 
by theoretical reasoning and later experimentally confirmed by Herz. Maxwell's 
great achievement was later equalized by Einstein who proposed in the general 
theory of relativity that gravity r curvature. Ever since Einstein's achievement 
of describing gravity in terms of non-Euclidean geometry, theoretical physics has 
witnessed a stunning development based on geometrical reasoning resulting into 
the gauge theories having a geometrical interpretation very analogous to Ein- 
stein's theory of gravity. Electrodynamics is the low-energy limit of these gauge 
theories. Besides the aesthetic beauty that results from these insights, there 
is also pragmatic benefit. Solving electrodynamic problems on the computer, 
guided by the geometrical meaning of the variables is a decisive factor for the 
success of the calculation. This was already realized by Wilson [2] who initiated 
computer calculations on the quantum aspects of gauge theories. In order to 
perform computer calculations of the classical fields, geometry plays an equally 
important role as will be shown here. 



The classical fields E and B as well as the sources p and J are invariant under 
gauge transformations and therefore their underlying geometrical meaning is 
hidden. We may identify the proper geometric character for these variables, such 
as scalars (zero-forms), force fields (one-forms), fluxes (two-forms) or volume 
densities (three-forms) as could be done for any other fluid dynamic system. This 
can be done without reference to the geometric nature of electrodynamics in the 
sense that E and B represent the curvature in the geometrical interpretation of 
electrodynamics. Therefore, in this paper we will consider the scalar potential 
and vector potential fields that do depend on gauge transformations and as such 
will give access to the geometry of electrodynamics. 

2.1 Gravity as a gauge theory 

The history of the concept of gauge invariance begins with the discovery of the 
principle of general covariance in general relativity. According to this principle 
the physical laws should maintain their form for all coordinate systems. Weyl 
[3] made an attempt to unify electrodynamics with gravity. According to the 
general theory of relativity, the gravitational field corresponds to curvature of 
space-time, and therefore, if a vector is parallel transported along a closed loop, 
the angle between the starting vector and the final vector will differ from zero. 
Furthermore, this angle is a measure for the curvature in the space. Weyl ex- 
tended the Riemann geometry in such a way that not only the angle changes 
but also the length of the vector. The relative change in length is described by 
an anti-symmetric tensor and this tensor is invariant under changing the "unit 
of length". This invariance is closely related to charge conservation. Weyl called 
this "Maszstab Invarianz". The theory turned out to be contradictory and was 
abandoned, but the term "Maszstab Invarianz" survived (Maszstab = measure 
= gauge). Within the realm of quantum mechanics the principle of gauge invari- 
ance obtained its final interpretation: gauge invariance should refer to the phase 
transformations that may be applied on the wave functions. In particular, the 
phase transformation may be applied with different angle for different points in 
space and time. At first sight it looks as if we have lost the geometrical connec- 
tion and that the link is only historical. However, a closer look at  gravity shows 
that the link is still present. 

Starting from the idea that all coordinate systems are equivalent, we may con- 
sider a general coordinate transformation x, + x" = x"(xU) and the transfor- 
mation rule for coordinate differentials dxl' = $dxu. A tuple transforming 
under a change of coordinates as the coordinate differentials is a contravariant 
vector and a scalar transforms in an invariant way. The derivative of a scalar 
V, = transforms as V,I = g V u .  Any tuple transforming under a change 
of coordinates as the differentials of a scalar function is a covariant vector and 
in general, tensors transform according to a multiple set of pre-factors. The 
principle of general coordinate covariance can be implemented by claiming that 
all physical laws should be expressed as tensor equations. Since left and right 
hand side will transform with equal sets of pre-factors, their form invariance is 
guaranteed. 



So far, we have only been concerned with the change from one arbitrary coordi- 
nate system to another. One might argue that this will hide well-known results 
in a thick shell of notational complexity. In order to peal off this shell and 
to reveal the physical implications one must refer to the intrinsic properties of 
the geometric structure. Occasionally, the intrinsic structure is simple, e.g. flat 
space time, and the familiar relations are recovered. It was Einstein's discovery 
that space-time is not flat in the presence of matter and therefore the physical 
laws are more involved. 

Riemann geometry is a generalization of Euclidean geometry in the sense that 
locally one can still find coordinate systems, Jp = ( i c t , ~ ) ,  such that the distance 
between two near-by point is given by Pythagoras' law, i.e. ds2 = Sp,dJpdJV. 
In an arbitrary coordinate system the distance is given by 

In the local coordinate system, t, the equation of motion of a freely falling 
particle is $$ = 0. In an arbitrary coordinate system, this equation becomes 

where is the afine connection also referred to as the Christoffel symbols. 

The affine connection transforms under general coordinate transformations as 

The second term destroys the covariance of the f i n e  connection, i.e. the affine 
connection is not a tensor. The metric tensor gpV(x) contains information on the 
local curvature of the Riemann geometry. Now consider a vector Vp(r) along 
a curve xp(r). In the local-Euclidean coordinate system (J), the change of the 
vector along the curve is dVp1d.r. In another coordinate system (xl), we find 
from the transformation rules 

The second derivative in the second term is an inhomogeneous term in the trans- 
formation rule that prevents dVpldr from being a vector and contains the key 
to curvature. This term, is directly related to the affine connection. The combi- 
nation 



does transform as a vector and is called the covariant derivative along the curve. 
In the restricted region where we can use the Euclidean coordinates, [, we may 
apply Euclidean geometrical methods, and in particular we can shift a vector 
over an infinitesimal distance from one point to another and keep the initial 
and final vector parallel. The components of the vector do not alter by the 
shift operation: 6Vfl = 0. Furthermore, in the local frame xp = (:(,,, the 
affine connection vanishes, i.e. rzv = 0. Therefore, the conventional operation 
of parallelly shifting a vector in the locally-Euclidean coordinate system can be 
expressed by the equation D V p l D r  = 0. Being a tensor equation, it holds for all 
coordinate systems. A vector, whose covariant derivative along a curve vanishes, 
is said to be parallel transported along the curve. The coordinates satisfy the 
following first-order differential equations. 

The parallel transport of a vector VP over a small distance dxv changes the 
components of the vector by amounts 6Vfi = -I'f)XVvbxX. 

In general, if we want to perform the differentiation of a tensor field with respect 
to the coordinates, we must compare tensors in two nearby points. In fact, the 
comparison corresponds to subtraction, but a subtraction is only defined if the 
tensors are anchored to the same point. (In different points, we have different 
local coordinate systems.) Therefore we must first parallel transport the initial 
tensor to the nearby point before the subtraction can be performed. For example, 
the covariant differential of a vector field is 

So far, the general coordinate systems include both accelerations originating 
from non-uniform boosts of the coordinate systems as well as acceleration that 
may be caused by the gravitational field due to the presence of matter. In the 
first case, space-time is not really curved, in the second case it is curved. In 
order to find out whether gravitation is present one must extract information 
about the intrinsic properties of space-time. This can be done by the parallel 
transport of a vector field along a closed loop. If the initial and final vector 
differ, one can conclude that gravity is present. The difference that a closed 
loop transport generates is given by 

where R;~, = rgp,v - + rivr:p - ripr:, is the curvature tensor or 
Riemann tensor. This tensor describes the intrinsic curvature in a point. 

We are now prepared to consider the geometrical basis of electrodynamics and 
other gauge theories but we will first summarize a few important facts: (1) in 
each space-time point a local frame may be erected, (2) the affine connection 
is a path-dependent quantity, (3) the affine connection does not transform as 



a tensor, (4) the field strength (curvature) may be obtained by performing a 
parallel transport along a closed loop. 

2.2 The geometrical interpretation of electrodynamics 

Just as with the local Euclidean coordinate systems, we will consider the possi- 
bility to set up in each space-time point a local frame for fixing the phase of the 
complex wave function +(x, t). Since the choice of such a local frame (gauge) 
is not unique we may rotate this frame without altering the physical content 
of the wave function. We can guarantee the latter by demanding appropriate 
transformation properties (c.f. the tensors in above section) of the variables. 
Changing the local frame for the phase of a wave function amounts to 

These transformation rules are similar to the contravariant and covariant trans- 
formation rules for vectors in the foregoing section. We can construct a 'scalar' 
by taking +*+. The derivative of the wave function transforms as 

The second term prevents the derivative of $ from transforming as a 'vector' 
under the change of gauge. However, now geometry will be of help to provide 
a solution for constructing gauge covariant variables from derivatives. We must 
postulate an 'affine connection', such that a covariant derivative can be made. 
For that purpose a connection A, is defined that transforms as A, = A, + g. 
The covariant derivative is 

Just as with the gravitational a%ne connection, the field A, can be used to 
construct 'parallel' transport. Therefore, the field A, must be assigned to the 
paths along which the transport takes place. The curvature of the connection 
can also be revealed by integrating the affine connection around a closed loop. 
The result is F,,ds"6xY = $ dxpA, and F,, = % - is the electromagnetic 
field tensor. 

3 Implications for numerical simulations 

In order to perform numerical computations starting from the fields A, it is 
necessary to introduce a discretization grid. The simulation of a finite space 
and/or space-time domain requires that each grid point is separated a finite 
distance from its neighboring points. Then the differential operators that appear 
in the continuous field equations must be translated to the discretization grid by 
proper reference to the geometrical meaning of the variables. The connections 
A, should be assigned to the links in the grid. 



The geometrical interpretation suggests that the link assignment is the only cor- 
rect scheme for solving vector-potential field problems on the computer. 

The numerical consequences of the above assignment will be considered in the 
following example, in which we will solve the steady-state equations V x B = 
,uoJ , B = V x A , J = aE , E = -VV. The usual approach consists of 
substituting the second equation into the first one, adopting the Coulomb gauge 
V . A = 0 and obtaining -V2A = ,uo J .  Analytic solution schemes address this 
equation as a three-fold Poisson equation. This approach is usually sustained 
in numerical solution schemes, assigning the three components A,,A,, A, to 
the nodes of the discrete lattice. This approach is in conflict with the geomet- 
rical interpretation of electrodynamics, since three scalar fields and the three 
components of a vector field are geometrically different objects. 

We will now discretize the set of equations on a regular Cartesian grid having 
N nodes in each direction following our new approach. The total number of 
nodes in D dimensions is Mnodes = N~ and the number of links in the lattice 
is Mlinks = D N ~ ( ~  - h). 
As far as the description of the electromagnetic field is concerned, the counting 
of unknowns for the full lattice results into Mlinks variables (Aij) for the links, 
and Mnodes variables (I$) for the nodes. Since each link (node) gives rise to 
one equation, the naive counting is consistent. However, we have not yet im- 
plemented the gauge condition. The conventional Coulomb gauge V A = 0, 
constraints the link degrees of freedom and therefore not all link fields are inde- 
pendent. There are 3N3(1 - &) link variables and 3N3(1 - &) + N3 equations, 
including the constraints. As a consequence, at  first sight it seems that we are 
confronted with an overdetermined system of equations, since each node pro- 
vides an extra equation for A. However, the translation of the Maxwell-Amphre 
equation on the lattice leads to a singular matrix, i.e. not all rows are indepen- 
dent. The rank of the corresponding matrix is 3N3(1 - +), whereas there are 
3N3(1 - $) + N 3  rows and 3N3(1 - &) columns. Such a situation is highly 
inconvenient for solving non-linear systems of equations, where the non-linearity 
stems from the source terms being explicitly dependent on the fields. Moreover, 
the application of the Newton-Raphson method requires that the matrices in 
the Newton equation be non-singular and square. In fact, the non-singular and 
square form of the Newton matrix can be recovered by introducing the more 
general gauge V . A + V2x = 0, where an additional scalar field X, i.e. one 
unknown per node, is included. In this way the number of unknowns and the 
number of equations match again. In the continuum limit ( N  + co), the field x 
and one component of A can be eliminated. 

Though being irrelevant for theoretical understanding, the auxiliary field x is 
essential for obtaining numerical stability on a discrete, finite lattice. 

In other words, our specific gauge solely serves as a tool to obtain a discretization 
scheme that generates a regular Newton-Raphson matrix. 



To summarize, instead of solving the problem 

we solve the equivalent system of equations 

The equivalence of both sets of equations (13) and (14) was be demonstrated 
by [4]. Physical equivalence is guaranteed provided that V X  does not lead to an 
additional current source. Therefore, it is required that V X  = 0. In fact, acting 
with the divergence operator on the first equation of (14) gives Laplace's equa- 
tion for X. The solution of the Laplace equation is identically zero if the solution 
vanishes a t  the boundary. We achieved to implement the gauge condition result- 

ing into a unique solution and simultaneously to arrive at a system containing 
the same number of equations and variables. Hence a regular square Newton- 
Raphson matrix is obtained at  each stage of the numerical solution scheme that 
solves the full set of non-linear equations. 

3.1 Discretized operators 

Integrated over a test volume AVi surrounding a node i, the divergence operator, 
acting on vector potential A, can be discretized as a combination of 6 neighboring 
links 

The symbol - represents the conversion to the grid formulation and d(AV,) 
denotes the boundary of AVi. 
The curl-curl operator can be discretized for a link ij using a combination of 12 
neighboring links and the link i j  itself. As indicated in Fig. 1, the field Bi in 
the center of the 'wing' i ,  can be constructed by taking the circulation of the 
vector potential A around the wing i (i = 1,4) 

where h, is the length of the corresponding link a. Integration over a surface 
Sij perpendicular to the link ij yields a linear combination of different Aij's, 
the coefficients of which are denoted by Aij. 

For the nodal variables we apply the usual discretization methods. 



Figure 1: The assembly of the V x Vx-operator using 12 contributions of neigh- 
boring links. 

4 Application to the Spiral Inductor 

We present an example demonstrating that the proposed potential formulation 
in terms of the Poisson field V, the vector field A and the ghost field X, is 
a viable method to solve the Maxwell field problem. All subtleties related to 
that formulation, i.e. the positioning of the vector potential on links, and the 
introduction of the ghost field X, are already encountered in constructing the 
solutions of the static equations. 

A spiral inductor, as shown in Fig. 2 (left) was simulated. This structure also 
addresses the three dimensional aspects of the solver. The cross-section of the 
different lines is 1 pm x 1 pm. The overall size of the structure is 8 pm x 8 
pm and the simulation domain is 23 x 20 x 9 pm3. The resistance is evaluated 
as R = V / I  and is 0.54 R. In Fig. 2 (right), the intensity of the magnetic field 
is shown at height 4.5 pm. From the results in Table I1 we obtain that the 
inductance of the spiral inductor is 4.23 x 10-l1 Henry. 

Table 11: Some characteristic results for the spiral inductor. 

5 Conclusions 

Electric energy (J )  

We reviewed the geometrical aspects of electromagnetic field variables. Vector 
potentials are l-forms. This has severe consequences for their discretization. 
The vector potentials need to be assigned to the links of the grid. Inclusion 

kco J d r  E2 
g J d r  pq5 

Magnetic energy (J )  
2.22E18 
2.353-18 

$ J d r  B2 
p J d r  J . A 

3.80E13 
3.903-13 



Figure 2: Layout of the spiral inductor structure (left) and the magnetic field 
strength in the plane of the spiral inductor (right). 

of the gauge condition gives rise to non-symmetric Newton-Raphson matrices, 
when solving non-linear electromagnetic problems. This can be repaired by the 
inclusion of a 'ghost' field that has no physical effects but results into non- 
singular and square Newton-Raphson matrices. 
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