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Abstract 
A stochastic approach to a recently proposed model of terminal current fluctuations 
is presented. Two kinds of boundary conditions suitable for noise simulations in 
semiconductor devices are proposed. The properties and the domain of application 
of the two models are investigated and the conclusions are drawn from numerical 
experiments. 

1 Introduction 
The importance of current fluctuations in semiconductor devices and the physical and 
numerical complexity of their characterization stimulated a mutual development of the 
basic models and appearance of novel models for the current noise. Fundamental is 
the Ensemble Monte Carlo (EMC) method which provides both a model and numerical 
approach to the phenomena. The method is based on the notion that a direct emulation 
of the stochastic processes underlying the transport phenomena provides along with the 
physical mean values also their fluctuations. If the transport process is emulated and 
the current i ( t )  is recorded in the time interval (0, T )  [I], the autocovariance function 
which characterizes the fluctuations is retrieved from its basic definition: 

T . ,, 

i(t)i(t+r)dt-(i)2 ( I )  
0 

where the brackets denote ensemble averages. A stationary process is considered ( ( i )  
= const) so that Ci becomes independent on the reference time t  and the ensemble av- 
erage is replaced by the time average in (1). The advantages and the drawbacks of 
this stationary EMC model are well known. The latter are particularly due to the fact 
that boundary conditions (BC) determine the device behavior. The EMC which is ap- 
propriate for evolution problems requires an initial transient period until the ensemble 
becomes stationary inside the device. The leaving particles must be re-injected to main- 
tain the stationary process. Different models for re-injection from the boundaries are 
studied [2], [3] and it is shown that they affect the fluctuation characteristics. 

Recently an alternative model for the current noise has been proposed [4], [5]. The 
autocovariance function has been obtained as a statistical average: 

The space coordinate x is for a one-dimensional device with a length L and k denotes 
the wave vector. Here i ( k ,  x)  is the current contribution from a particle in the partic- 
ular phase space point according to the Ramo-Shockley theorem and g is an effective 
distribution function. The latter is the solution of the time dependent Boltzmann equa- 
tion for an initial condition (IC) go(k, x)  = i (k ,  x) f,(k, x) / ( i ) ,  f, being the stationary 
solution in the device. In [3] the model has been applied to a bulk semiconductor using 
a deterministic method. 



2 Boundary conditions 
As applied to devices, the model requires proper BC. They are formulated in the frame- 
work of the stochastic method developed for evaluation of (2). A Monte Carlo approach 
to the latter simulates an evolution of the effective distribution function in contrast to 
the direct emulation of the current fluctuations. 

The first BC model can be deduced from the limit Ci -+ 0 when r -+ co. The effective 
distribution g must evolve from go to f ,  in this limit. Practically Ci becomes zero after 
some time t ,  typical for the concrete device. The stationary distribution f ,  is ensured 
by the physical BC and it is thus concluded that they are the proper BC for (2). The 
particles that leave the device are re-injected according the BC in the way also used by 
the stationary EMC. The following effect can be encountered in this picture: particles 
exiting the device contribute to Ci after being reinjected with the BC, commonly taken 
to be the equilibrium distribution. If the exiting particles are not thermalized in the 
contact, the sudden cooling by the BC affects the autocovariance function. This problem 
is typical also for the stationary EMC which relies on the re-injection to maintain the 
steady state current. Special algorithms have been developed to avoid this effect [3]. 

The second BC model is obtained from (2) by noting that Ci contains as an integrand 
the difference $(k ,  x, T )  = g(k,  x, T )  - f,(k, x) .  Both, g and f ,  satisfy the Boltzmann 
equation which has the following integral form: 

with a trajectory determined by the electric force F and velocity v: 

The initial condition fo and the boundary conditions f b  participate explicitly in the 
integral form (4). f b  is zero insidesthe device and is specified only on the boundaries, 
while fo is zero if x(0) is placed outside the device. The time tb is determined from the 
position where the Newton trajectory (4) crosses the device boundary x( tb)  = xb. f ,  is 
a solution of (4) for IC given by fo = f,, while for the function g the IC are given by 
fo  = go.  Both, f ,  and g utilize the same BC given by the term f b .  It follows that the 
equation for does not contain f b :  

( k ,  x T )  = J dtl J dk14(k1, x ( t l ) ,  t ' ) ~ ( k ' ,  k(tl))e-1.: d~*(k(~)) 

This equation describes a purely transient problem, where two ensembles with initial 
conditions go and f ,  evolve in time as 40 ( k ,  x, T )  and 4,(k ,  x, T )  and give the solution 
as the difference 4 = - 4,. The boundaries absorb all particles that leave the device 
without re-injection. 



The autocovariance (2) becomes: 

where 

L 

By using the definition of go it is seen that ( 5 )  is the autocovariance function of the 
process of evolution of an ensemble of particles initially distributed according the sta- 
tionary distribution f, in the device. With the absorbing BC the particles leak trough 
the device boundaries which corresponds to a transient process. ( 5 )  resembles the basic 
definition of the autocovariance function given by the first equation in (1). 

The stochastic method consists of alternative MC algorithms which obtain the IC, sim- 
ulate the evolution process, and obey the BC. The main feature is that a One Particle 
MC (OPMC) simulation is used to obtain the stationary distribution f, inside the de- 
vice. The latter gives rise to initial points of an ensemble of particles, whose evolution 
provides the current autocovariance function. In this way the initial transient simula- 
tion required by the stationary EMC can be saved since OPMC is much more efficient 
in obtaining f,. Indeed, while the EMC method collects the information at the end of 
each trajectory, the OPMC collects the information from each trajectory segment. In 
the present formulation of the task the ensemble is followed until the time t ,  which is 
commonly few orders less than the averaging time T of the stationary EMC. The evo- 
lution process imposed by the first kind of BC resembles the physical transport in the 
device and thus can be simulated self-consistently by a coupling with the Poisson equa- 
tion. Here we compare the two kinds of BC using non-selfconsistent simulations. In 
this case the electric field is stationary, so that the ensemble trajectories can be mapped 
onto the OPMC trajectory similar to the way discussed in [6]. 

The numerical experiments for the two BC models are summarized in Fig. 1 and Fig. 2 
respectively. A silicon n+nn+ structure with a length of each segment of 0.2pm and 
doping concentration 1017 : 1016 cmP3 is considered at different applied voltages. The 
autocovariance functions are normalized as Ci (T) /Ci (0). The curves for the absorbing 
and the injecting BC overlap each-other and relax to zero as expected. However this 
is not true for a resistor with the same total length 0.6pm, considered on the right 
of Fig. 1. At equilibrium the results of the two models coincide. At 0.25V there is 
already a difference in the corresponding curves which increases with the increase of 
the applied voltage. At 1V the autocovariance for the absorbing BC relaxes to zero, 
while for the injecting BC remains well above zero as seen on the left picture of Fig. 2. 
We assign this to the influence of the ohmic contact on the autocorrelation during the 
process of re-injection: the carriers are hot when leaving the device and are injected 
back thermalized. This conclusion is supported by additional experiments showing 
a decrease of the effect when the length of the structure increases under a constant 
electric field inside. In this case the portion of the leaving carriers decreases with respect 
to the total number of particles in the resistor. Another experiment is shown on the 
right of Fig. 2. The simualted structure is formed by two tiny highly doped 0.05pm 



regions attached on both sides of the resistor which cool the exiting carries. The two 
autocorelation functions coincide again. 

We conclude that the injecting BC can be applied if the contact regions thermalize 
the carriers before they leave the device. The absorbing BC model is universal and 
physically more transparent since it refers to the dwelling time of the particles in the 
device. 
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Fig. 1: Current Autocovariance for the n+nn+ diode (left) and the resistor (right) 
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Fig. 2: Current Autocovariance at 1 Volt for the resistor (left) and the n+nn+ structure (right) 
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