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1 Introduction 
During these last years the width of interconnects in silicon layouts has been 
reduced to less than 0.25pm1 the number of metal levels has been increased up to 
five and the contributions to parasitic capacitances has become dominant. This 
is why a renewed interest has been triggered on the development of improved 
extraction methods and recent literature reports a large number of proposals. 
Capacitance evaluation is a well known and studied problem which requires the 
solution of the Laplace's equation for the electrostatic potential. Many codes 
have been developed so far, based on finite element or finite difference methods, 
solving the Laplace's equation even in a 3D geometry; however they can be 
seldom applied to real life silicon layouts, since due to the layout geometrical 
complexity they easily run out of computer resources. The bottleneck is usually 
circumvented by avoiding the solution of Laplace's equation for the entire layout 
and trying to break the problem into many elementary geometries (sub-problems) 
or by not considering the real 3D geometry. Those are the so called "quasi 
3D" or "2.5D1' extractors. In this paper we present an alternative approach for 
parasitic extraction which solves the Laplace's equation considering the entire 
layout without making any geometrical simplification or breaking. It is based on 
an extended version of the Floating Random Walk algorithm (FRW) [2]. The use 
of FRW is not novel, but so far it has been limited to the extraction of the total 
capacitance of the interconnect. Here we show how to use FRW together with 
the Picard-Carson iterative procedure [l] in order to efficiently get a compact 
model of an interconnect. 

2 The Picard-Carson method 
Given the interconnect shown in fig. 1 of total length L,  it is possible to represent 
its behavior at  the input (x = 0) and output (x = L) terminals in the Laplace 
domain by means of the transmission matrix T relating the voltage V(L) and the 
I (L)  current, measured at the end of the interconnect, with the corresponding 
values V(O), I(0)  at the input 

The A, B, C, D entries can be computed using closed forms [I]: 



where Ai = ~ ( ~ ~ 1 ,  Bi = Ci = $(2i-1), Di = $(2i). Saying c(x) and r(x) 
the line capacitance and resistance per unit length, the above terms are derived 
by means of the iterated integrals: 

(x) = 6% ti)(h-l)(T)r(7)dT ; $(h)(x) = 8. c ( ~ - ~ ) ( T ) c ( T ) ~ T  x E [o, L] 6" 
where c(O)(x) = +(O)(X) = 1 represent the initial guess. The r(x) function is 
known, while c(x) is evaluated using the FRW algorithm, as summarized in the 
following section. 

3 Parasitic capacitance extraction and FRW 

The self capacitance of an electrode is equal to the electrical charge induced on it 
when its potential is raised to 1V and the other electrodes and ground plane are 
at  OV. The charge on the electrode is in turn equal to the flux of the electrical 
displacement vector through the C Gaussian surface contouring the interconnect. 
In this way the capacitance estimation is recasted in terms of evaluation of flux. 
The same approach can be adopted for the estimate of c(x), which, in FRW, is 
done in a statistical way. Following a Monte Carlo procedure pick a point p on the 
C Gaussian surface as shown in fig. 1 and start a random walk from it by choosing 
hops on maximum spheres that do not intersect other interconnects or ground 
plane. Selection of B, C ,  D, E points (see fig. 2) is randomly done according to a 
probability density function related to the Green function that links potential or 
electric field displacement in the center of each sphere to potentials on its surface. 
A possible random walk that end on an electrode in the E point is shown in fig. 
2. The average value of the potentials collected on electrodes gives an estimation 
of the c(p) value. 
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It can be shown that the recursive computation of the entries of the T matrix in 
done through this statistical sorting approaches, the exact values as the number 
of floating random walks goes to infinity. In practice a high but finite number 
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of iterations (e.g. 10000) are performed till the estimated statistical error falls 
below a suitable relative value (e.g. 5%). 

4 Simulation results 

The efficient extraction of the lumped model and the statistical evaluation of 
the above integrals make the new algorithm very efficient and suitable for ap- 
plications to industrial 3D layouts. Figs. 3, 4 show a performance comparison 
between SIMPLEX [3] and our approach, denoted to as FASTNET, in terms of 
CPU time and memory allocation. In both Figs. bars on the left refer to a simple 
cell embedded in the layout of Fig. 5. During parasitic extraction of this cell, 
FASTNET allocates more memory with respect to SIMPLEX due to the over- 
head for storing the layout structure. Bars on the right in the same Figs. show 
the performance in the analysis of the more complex layout in Fig. 5. In this 
case FASTNET memory allocation and CPU time remain almost the same, while 
SIMPLEX requires much more resources: the CPU time grows exponentially and 
also the memory allocation is about three time larger. Note that in both cases 
FASTNET is even more accurate (< 5%) than SIMPLEX (< 10%). In  general 
FASTNET CPU time remains almost independent of the dimensions of the cir- 
cuit layout thus becoming extremely eficient i n  handling parasitic extraction in  
realistic industrial layouts. 
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Fig. 3. CPU time required by FASTNET Fig. 4. Memory required by FASTNET 
and SIMPLEX for computing the equiv- and SIMPLEX for extracting the capac- 
alent lumped models of the interconnects itance of nets of a simple cell embedded 
of a simple cell embedded in the layout in the layout of Fig. 5 (left two bars) and 
of Fig. 5 (left two bars) and of the more of the layout in Fig. 5 (right two bars). 
complex layout of Fig. 5 (right two bars). 

Fig. 6 compares the number of RC cells needed by SIMPLEX and FASTNET to 
model an interconnect and to  reach the same accuracy in the delay evaluation. 
Note that since geometry of layout has not been partitioned by FASTNET the 
equivalent RC network is always composed of a few number of cells independently 
from line length L. Despite compactness this equivalent model has an accuracy 
comparable to that composed of 100 cells of SIMPLEX as shown in fig. 7. 



[mVl 

940 

920 

900 

880 

860 

840 

820 

800 

780 

30 35 40 45 50 time Ips1 

Fig. 7. Leading edge of the voltage pulse 
at the end of the line in Fig. 5, as  de- 
rived by SIMPLEX when using 100 RC 
cells (crosses) and by forcing SIMPLEX 
to use only 8 (circles) and 4 cells (empty 

Fig. 5. Typical interconnect (highlighted squares). Result obtained with the two 
in white) in a 0.25pm 6 metal level tech- cell equivalent network (filled squares) 
nology layout. extracted by (FASTNET). 
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A fast and accurate method to com- 
pute and reduce the lumped RC model 
of a distributed net has been pre- 
sented. It  is based on an exten- 
sion of the Floating Random Walk 
method and demonstrate that statis- 
tical methods are attractive to these 
applications since they need limited 
memory resources and are able to deal 
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