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Abstract 

This work deals with the Monte Carlo method for stationary device simulation, 
known as the Single-Particle Monte Carlo method. A thorough mathematical analy- 
sis of this method clearly identifies the independent, identically distributed random 
variables of the simulated process. Knowledge of these random variables allows us- 
age of straight-forward estimates of the stochastic error. The presented method of 
error estimation is applicable to both distributed quantities and integrated quantities 
such as terminal currents. 

1 Introduction 
To assess the accuracy of Monte Carlo (MC) simulation it is necessary to estimate the 
probabilistic error bounds of the results. In the field of MC device simulation this 
problem has received renewed attention [l]. We present a new method of estimating 
the variance of the stationary MC method. The method is based on the identification of 
those random variables whose realizations are statistically independent. Knowing these 
random variables standard textbook formulae can be applied to estimate the variance. 

2 Variance Estimation 
In a thorough mathematical analysis of the single-particle MC method, outlined in 
[2][3], the Neumann series of the related integral equation is derived. Each term of 
that series describes the propagation of a carrier from the point of injection to the exit 
point at some contact. From this fact follows that only a complete numerical trajectory, 
that starts and terminates at the domain boundary, can be considered an independent 
realization of some random variable. In contrast, particle states generated on one tra- 
jectory are statistically dependent. The i-th realization of this random variable, say X ,  
consists of all generated random variables for the i-th trajectory, such as the initial state 
at the domain boundary, ko,  ro, the free flight times tj ,  and the after-scattering states, 
kj" . 

xi = {ko, ro,to, k:, t l ,  . . .kg, tj, . . .) j l Ni (1) 
The considered trajectory consists of Ni + 1 free flight segments. Another random 
variable Y (X)  needed in the following is defined by its realizations 

which contain all before-scattering states ka and the particle locations at the times of 
scattering, rj . 
With any quantity of interest, A(k, r), a random variable qA(Y) is associated. Assum- 
ing the before-scattering method for average recording, the i-th realization of !#A is of 
the form 



with X being the total scattering rate. Summation is again over one complete trajectory 
starting and terminating at the domain boundary. If a statistical enhancement technique 
is used, the particle weighs wj  has to be accounted for, otherwise all weights equal one. 

The result of a stationary MC device simulation can be expressed most generally as a 
ratio of statistical averages, 

with the definition (( . )) = SQ d r  J dk  . f (k, r ) .  Here D denotes the simulation 
domain. The function A is typically a product of some k-dependent function and an 
r-dependent charge assignment function [4], whereas the denominator accounts for the 
normalization (cf. Table 1). 

The random variable to be considered now is given by Qjc = @ A / @ B .  In the MC 
simulation one has to generate the samples $Ai and l(lBi using the rule (3). The so- 
called classical estimator of C is given by the ratio of the sample means. 

Additionally, the sample variances, s i  and s i ,  and the sample covariance s i B  have to 
be evaluated from the following definitions. 

N is the number of trajectories constructed in the simulation. From these inputs the 
variance of the random variable !PC can be estimated [ 5 ] .  

The error estimate for the result is finally given by the standard deviation 

3 Application and Discussion 
The following example demonstrates how the presented method of error estimation 
can be applied to both distributed quantities and integrated quantities such as terminal 
currents. As an example an n+nn+ silicon diode has been simulated,~ocessing 5 . lo8 
scattering events, which resulted in the simulation of N = 5.48 . 10 trajectories. The 
variances of the physical quantities collected in Table 1 have been calculated. 

In Table 1 the number of physical particles in the simulation domain is denoted by No, 
Wp(r) is the charge assignment function for grid point rp and Vp = J Wp(r)dr. The 



auantitv C A B 
carrier concentration n (NO /Vp)Wp(r) 1 

current density j ( q N ~ / V , ) v ( k )  Wp ( r )  1 
terminal current 4 (qND/Vp)v(k) Ohl ( r )  1 

mean velocity (v) 
mean energy ( E )  

v ( k )  WP ( r )  WP ( r )  
€04 W,  ( r )  WP ( r )  

Table 1: Examples of physical quantities used in (4). 

current calculation employs the weight function method with hl(r) being the weight 
function for contact 1.  
Fig. 1 shows the electron concentration and the distribution of the standard deviation. 
In Fig. 2 the current density is depicted, which exhibits large fluctuations in the left and 
right contact region. Consistent with the observed fluctuation is the estimated standard 
deviation which is considerably higher in the contact regions than in the n-region. 

distance ( rn) distance ( m) 

Fig. 1: Electron concentration and standard Fig. 2: Current density and standard 
deviation in an n+nn+ diode with a 0.2 eV deviation. 

built-in barrier. 

When computing the mean velocity using (4), ((A)) represents the particle current den- 
sity and ((B)) the particle density. The correlation factor TAB = s ~ ~ / ( s ~ s ~ )  of the 
MC estimate of the two densities is plotted in Fig. 3 (dashed line). An interesting re- 
sult is the high positive correlation of the energy density and the particle density (solid 
line), which gives a significant reduction in standard deviation according to (8). A con- 
sequence of positive correlation is that a mean value per carrier has less variance than 
a mean value per unit volume, This is demonstrated in Fig. 4. Accounting for the fluc- 
tuations of both the energy density and the particle density gives the lower standard 
deviation (curve std.dev), while by neglecting the fluctuation of the particle density the 
standard deviation is clearly increased (curve std.dev.A). 

The presented method has been used in conjunction with two statistical enhancement 
methods, the trajectory repetition scheme due to Philips and Price [6], and the recently 
investigated method of event biasing [3]. The presented method is parameter free in 
the sense that neither an unknown parameter of a stochastic process such as the cor- 
relation time needs to be estimated, nor the particle's history needs to be divided into 
sub-histories of some artificially predefined length.Instead, the total history is divided 
naturally into independent sub-histories at the times when the particle reenters the sim- 



distance ( m) dlslance ( m) 

Fig. 3: Correlation coefficients of the the  Fig. 4: Mean energy and its standard 
energy density n(6) and  n, and  of the particle deviation, including the fluctuations of energy 

current n(v,) and n. density and particle density (std.dev), a n d  
neglecting the fluctuation of particle density 

(std.dev.A). 

ulation domain. A process with such property is referred to as regenerative stochastic 
process [ 5 ] .  

4 Conclusion 
For the first time the independent, identically distributed random variables underlying 
the Single-Particle Monte Carlo method for device simulation have been identified. 
Knowing these random variables allows this Monte Carlo method to be supplemented 
with the natural stochastic error estimate. Without variance estimation, the statistics 
can be collected after each free flight of the test particle, whereas variance estimation 
requires that over one particle trajectory a sub-statistics is collected, which is added 
to the total statistics when the trajectory terminates at the domain boundary. Variance 
estimation of both distributed and integrated quantities is demonstrated. If mean values 
per particle on a mesh are to be computed, correlation of the mean value per volume 
and the particle number per volume has to be taken into account, which leads to partial 
cancellation of statistical fluctuations. 
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