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Abstract 
We present a method of modeling quantum confinement effects in MOS- 
FET's by solving the Schrodinger, Boltzmann, Poisson and current-continuity 
equations self-consistently. 

1 Introduction 
As MOSFET dimensions shrink into the nanometer regime, and oxide thick- 
nesses reduce to the angstrom level, significant quantization effects occur in 
the motion of carriers perpendicular to  the interface. We need to  calculate 
the electronic properties of the quasi two-dimensional electron gas(2-DEG) and 
their effects on the MOSFET characteristics. Spinelli et a1.(1998) presented a 
self-consistent two-dimensional drift-diffusion(DD) model for carrier quantiza- 
tion effects in the channel of highly-doped nMOSFET's. A quantum mechanical 
treatment of electron inversion layers of nMOSFET's is also incorporated in the 
hydrodynamic(HD) transport model by Wang et a1.(1998). While these methods 
represent important contributions, they assume an equilibrium form a t  lattice 
or electron temperatures for the distribution function. However, it is well known 
that the channel distribution function is often far from equilibrium, which can 
lead to difficulties when populating the inversion layer subbands. Here we incor- 
porate carrier quantization effects in the channel of highly-doped n-MOSFET's 
by solving the Schrodinger, Poisson, Boltzmann and Current-continuity equa- 
tions self-consistently. The new method naturally accounts for highly nonequi- 
librium effects including velocity overshoot, and we populate the subbands ac- 
cording to the self-consistent nonequilibrium distribution function we obtain by 
solving the Boltzmann transport equation(BTE) (Liang et al. 1997). 

2 Theory and realization 
First we solve the Poisson equation, electron BTE and the hole current-continuity 
equation with the Spherical Harmonic Boltzmann(SHBTE) method. After get- 
ting self-consistent simulation results, we can solve the Schrodinger equation 
based on the potential energy V(y) from the Poisson equation result. Using 
the new quantum-mechanical electron density, and a quantum mechanically up- 
dated form for the potential, we solve the Poisson equation, electron BTE and 
holes current-continuity equation again until these four equations converge. The 
flowchart of the QM-SHBTE is shown in Fig. 1. The complete model is given 
by: 



where $(r', t )  is potential, n, is the quantum electron density, f (r', z, t) is electron 

distribution function, lc  is the collision term, p(i ,  t) is hole concentration, 

m* is effective mass along the direction perpendicular to the interface, V(y) is 
the potential energy of the electrons, and Ei and $i are the eigenenergy and 
eigenfunction of the ith subband respectively. 

To solve the Schrodinger equation, we use a QL decomposition algorithm 
and a constant effective-mass approximation. After getting the energy levels 
and envelope functions, we populate the subbands and compute the electron 
density with the following 

where f (E)  is the distribution function calculated directly by the Spherical Har- 
monic BTE solver, and Di(E) is the quasi 2-D density of states for electrons. 
Fig. 2 is the energy dispersion of a quantum well with subband energies. The 
integration of eqn.(5) corresponds to the area under distribution function curve 
between Ei and oo as shown in Fig. 3, which gives the electron concentration of 
each subband. 

3 Results 

Fig. 4 shows the classical and quantum electron concentration of the nMOS- 
FET. The bias condition is Vd = 0.05V and Vg = 2.5V. The subthreshold 
characteristics(log(Id) vs. V,) are shown in Fig. 5. We can see in this figure 
that the threshold voltage is increased by the quantization effect. Also the larger 
V, is, the larger the difference between classical and QM results. We show Id 
vs. Vg for high drain bias(Vd=l.O V) in Fig. 6. As can be seen in this figure the 
difference between classical and QM result is reduced by increasing drain bias 
since DIBL will decrease the depth of the quantum potential well and pinchoff 
widens it. The I-V characteristics are shown in Fig. 7 and Fig. 8 for Lg = O.lpm 
and L, = 0.25pm respectively. They show that for these particular devices, the 
shorter the device length, the larger the difference between classical and QM 
results. Current density is shown in Fig. 9 and 10. We can see clearly the QM 
effect that the peak value of current density is several A away from the Si02/Si  
interface, and the smooth current density usually implies a well-converged result. 
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Fig. 1. The flowchart of the 
quantum BTE simulator 
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Fig. 2. Energy dispersion of 
quantum well. 

Fig. 3. The distribution function Fig.4. Electron density from 
at surface for surface to substrate at 

V, = 2.5V, Vd = 0.05V. V, = 2.5V, Vd = 0.05V. 
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Fig.5. log(Id) vs. V, for Fig.6. Id VS. Vg for 
Vd = 0.05V7 L, = O.1pm. Vd = 1.0V7 Lg = 0.lpm. 
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Fig.7. I-V characterictics for Fig.8. I-V characterictics for 
L, = 0.lpm. L, = 0.25pm. 
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Fig.9. The current density Fig.10. The current density 
maxium below surface of maxium at surface of 

nMOSFET(QM-SHBTE). nMOSFET(SHBTE). 




