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Abstract 

We present an advanced algorithm for an extraction tool that computes inductances 
of interconnect structures. As already pointed out in [I] the pursued energy con- 
cept leads to a 6-fold integral which can also be evaluated by use of the Monte 
Carlo method. Classical implementation of the Monte Carlo method, where the 
whole geometry has to be hunted for the associated element loses efficiency. Our 
approach is applied without time consuming element location for the random point 
coordinates to compute this integral. 

1 Introduction 
One consequence of technology scaling by shrinking feature sizes and increasing clock 
frequencies is the growing importance of interconnect lines. The performance of inter- 
connects is limited by various parasitic effects (eg. signal delay, capacitive and inductive 
crosstalk, attenuation). The utilization of new materials (Copper and low-k dielectrics) 
reduces the RC time constant. Thereby decreased resistance and capacitance bring out 
inductive effects more intensively, requiring consideration in circuit simulation. Thus, 
inductance extraction becomes necessary for critical nets. 

2 Physical approach 
We compare two stationary inductance calculation methods both based on a numerical 
solution of Neumann's formula [2] for a precalculated current density distribution: 

The integration is carried out numerically, where special attention has to be paid on 
the singularities of the integrand, or with the Monte Carlo method. For both methods 
the stationary current density is calculated with the finite element method. The first 
method [ l ]  employs a summation of the contributions of all pairs of finite elements to 
solve the integral (I), where different kinds of approximation are used, depending on 
the term I?- ?'I. For a large distance (compared to the tetrahedron diameter) simple 
integration formulae are sufficient. The evaluation for small distances demand special 
formulae with certain integration points, published by Stroud [3] who presented various 
integration formulae which are applicable for various n-simplexes (e.g. the unit triangle, 
the unit tetrahedron) as integration region. If ?and ?I are in the same tetrahedron, a 
partially analytic integration scheme is used to increase the accuracy of the integration. 



3 The Program Package 
The SMART ANALYSIS PROGRAMS [4] use the finite element method, because of it's 
advantages, as numerical robustness, the ability to solve nonlinear systems, high ob- 
tained accuracy, and general applicability. 

The geometry can be defined either directly from the layout by specifying layer thick- 
nesses, or by a rigorous topography simulation [5, 61. The layout of the interconnect 
structure can also be imported from CIF or GDSII files, or created interactively with a 
graphical layout editor 171. Furthermore, the program package includes three preproces- 
sors, one for two-dimensional applications (CUTGRID) the other for three-dimensional 
applications. The preprocessor LAYGRID allows a layer-based input of the simulation 
geometry and the specification of the boundary conditions on the borders of each subdo- 
main. The fully unstructured three-dimensional Delaunay grid generator DELINK [8] 
utilize an advanced-front algorithm, whereby the mesh generation starts from the initial 
front to fill up the solids with tetrahedrons. 

A preconditioned conjugate gradient solver (ICCG), which has been optimized specifi- 
cally for the discretized Laplace operator, is used to solve the linear systems for domains 
of conducting materials [9]. By applying Ohm's law to the derivative of the electrostatic 
potential the distribution of the electric current density is obtained. The simulation is 
performed with the module STAP (Smart Thermal Analysis Program), where both in- 
ductance extraction methods have been implemented. 

Two postprocessors complete the program package, whereby the visualization tool SV 
is based on VTK [lo], a flexible and powerful visualization library. Both postproces- 
sors can be used to verify the grid quality, and for the visualization of several distri- 
butions (e.g. electric potential, temperature, current density), whereby SV provides 
numerous features, as eg. cutting plains, volume rendering and contour faces repre- 
sentation of distributions. Fig. I gives an overview about the SMART ANALYSIS PRO- 
GRAMS. 
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Fig. 1: The SMART ANALYSIS PROGRAMS: tools and dataflow 



4 The Monte Carlo Implementation 
A well-known choice for the evaluation of multiple integrals is to apply the Monte 
Carlo method. Associated with this method, where by random the point coordinates 
are chosen, is a fairly high effort on CPU-time, because of the time consuming search 
for the associated element of the random point coordinates. To reduce the error a high 
number of function evaluations has to be carried out, whereby for each evaluation the 
aligned element with the precalculated current density must be found. To improve 
the convergence during the Monte Carlo sampling several variance reduction schemes 
(e.g. importance sampling, control variates) are known to accelerate the computation 
procedure [ I  11. 
One big advantage of our implementation is to bypass the high computational effort 
for the element location. We first determine the associated element to the evaluated 
probability function, and then locate the point inside the tetrahedron. For this purpose 
we take two arrays for every conductive segment. In the first one is the volume of 
each element, whereby the sum of all entries is scaled to one. In the second one is 
the probability function already evaluated for each conductor element by adding up 
all entries from the beginning to the current index of the first array. Then the random 
generator chooses a number between zero and one. The associated element complying 
to the probability function is found by a binary search. 

To ensure a uniform probability the local coordinates of the integration points are found 
by shooting into the unit cube. The first point inside the registered unit tetrahedron is 
taken. For the interpolation of the current density inside each element quadratic shape 
fbnctions are used. 

5 Application Example 
Figure 2 and Fig. 3 show the current density of two planar transformers. These trans- 
formers are build of two interwound spirals each of 3, respectively, 5-turns metal with 
5 pm width, a spacing of 15 pm, and an inner length of 54 pm. 

Fig. 2: Current density distribution of the Fig. 3: Current density distribution of the 
planar transformer with 3-turns metal planar transformer with 5-turns metal 

By utilizing the preprocessor LAYGRID three different grids were made. In Table 1 the 
simulation times for the current density and the Monte Carlo method, respectively, the 
first numeric method as accomplished above, and the calculated inductances are listed. 
The simulations were performed on a Digital Alpha workstation (DEC6001333 MHz). 



The number of samples for the Monte Carlo method was 1 million. The first column 
of Table 1 implies all elements of the conductive segments, whereby tetrahedral grid 
elements with quadratic shape functions were used. The analysis time for the Monte 
Carlo method is not so strongly influenced by the number of elements (n), because the 
computational effort for the binary search grows with ln(n). The simple integration 
formulae for the mutual inductances demand with increasing n almost the same time. 
Table 1 emphasize the advantages of the Monte Carlo method explicitly. 

Table 1: Analysis time and results of  the planar transformers 
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6 Conclusion 
We have presented a comparative study of two numerical techniques for inductance 
calculation in interconnect structures. Both methods are implemented into the pack- 
age SMART ANALYSIS PROGRAMS, which allows simultaneous extraction of three- 
dimensional effective parameters of VLSI circuits. 
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