Extraction of the Physical Oxide Thickness Using the Electrical Characteristics of MOS Capacitors

K. Eikyu, H. Takashino, M. Kidera, A. Teramoto, H. Umeda, K. Ishikawa, N. Kotani and M. Inuishi

ULSI Development Center, Mitsubishi Electric Corporation, Itami, Hyogo 664-8641, Japan Phone : +81-727-84-7325, Fax : +81-727-80-2693, E-Mail : eikyu@lsi.melco.co.jp

Abstract-The physical oxide thickness of ultrathin oxides is extracted using tunneling current characteristics of MOS capacitors. An extraction tool has been developed for the semiautomatic extraction. The tool has implemented nonlinear least square solver and GUIs. A tunneling current model is incorporated into the device simulator MIDSIP-T and it is used as a core simulator of the extraction system. It is found that the transition layer should be considered in the extraction of very thin oxide thickness below 4nm. A unified parameter set, $\phi_b=3.3$ eV and $m_c/m_b=0.41$, is obtained after the extraction of various samples.

I. INTRODUCTION

Recently semiconductor device scaling has been accelerating and it has been reported that the gate oxide thickness of MOSFETs will probably be scaled down below 2nm [1]. Generally oxide thickness $t_{\alpha x}$ is measured by ellipsometric method because of its simplicity of measurement. But the accuracy of the ordinary ellipsometer cannot be guaranteed for these very thin oxides. This makes it difficult to control process variation in fabrication lines as well as to obtain accurate oxide thickness.

There exists an alternative method of cross-sectional TEM. It is a more accurate method of determining physical oxide thickness, but it is not practical because of its high cost and low throughput. Recently t_{ox} extraction has been attempted from electrical data of MOS capacitors or transistors [2], [3]. However, the methods used include model parameters, such as oxide barrier height and electron effective mass in the oxide, the values of which show some difference in the literature. Therefore it is the general approach to determine parameter value so as to fit extracted t_{ox} to ellipsometric value or TEM value. In this work, we have attempted to determine these model parameter values without assuming the t_{ox} of thin oxide thickness.

II. EXTRACTION TOOL

We have developed the general purpose parameter extraction tool "PROMPT2". The t_{ox} extraction system can be easily constructed by modifying the scripts of PROMPT2. The block diagram of the t_{ox} extraction system based on PROMPT2 is shown in Fig.1. It is mainly composed of core simulators, the nonlinear least square (NLSQ) solver and GUI. Simulators and NLSQ solver are controlled by *perl* scripts. Since simulators and NLSQ solver are independent software, the system is easily adjusted for general purpose parameter extraction by modifying the *perl* scripts. Users can do such operations as param-

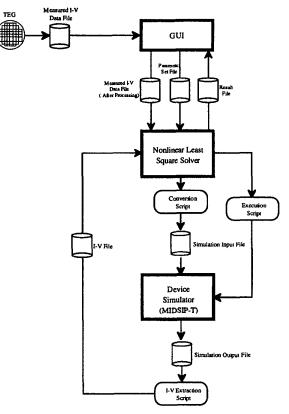


Fig.1 Block diagram of t_{ar} extraction system based on PROMPT2.

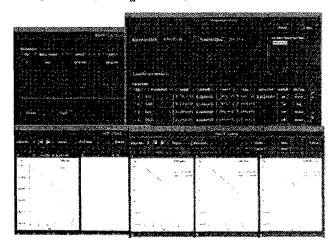


Fig.2 GUIs of PROMPT2

eter setting, execution of extraction and result display efficiently through GUIs (Fig.2).

Our in-house device simulator MIDSIP-T, which includes the gate tunneling current model [4], is used as core simulator in this work. In this system, $t_{\alpha r}$ extraction and model parameter calibration are possible from C-V as well as from I-V characteristics.

III. EXPERIMENT AND SIMULATION MODEL

C-V and I-V characteristics in the accumulation regime of n^* poly gate *p*-substrate MOS capacitors were used because the poly gate depletion effect could be ignored and the gate poly could be treated as metal. MOS capacitors were fabricated on *p*-type (100) silicon wafers (resistivity 10 Ω cm). The gate oxides were thermally grown by furnace oxidation in dry or wet atmosphere at 750°C. Then highly phosphorus-doped polysilicon was deposited and patterned. Process condition and average t_{ox} measured by ellipsometer of samples used in this work are listed in Table 1.

Firstly, parameters of van Dort's Quantum Mechanical correction (QM) model [5] were calibrated using C-V characteristics in the range of $t_{ar} = 3 - 10$ nm (Fig.3). QM model param-

 TABLE 1

 Sample condition used in t_{at} extract

sample No.	oxidation	t _{ox} by ellipsometer [nm]
#2	dry	2.33
#3	dry	2.76
#4	dry	3.40
#5	dry	4.07
#6	wet	2.98
#7	wet	3.41
#8	wet	3.81
#9	wet	4.98
#11	wet	10.07

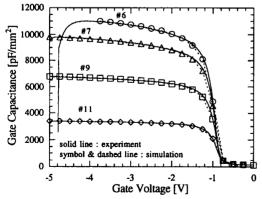


Fig.3 C-V characteristics after QM model calibration.

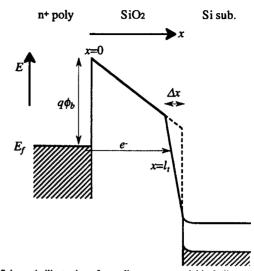


Fig.4. Schematic illustration of tunneling current model including transition layer. $m_v/m_0=5$ and $E_z=9.0$ eV is used. These two parameters are not so sensitive to the tunneling current.

eters obtained here are consistent with [6]. C-V characteristics cannot be measured accurately in very thin oxide samples. Therefore I-V characteristics are preferable in extracting the t_{ox} of such samples.

Tunneling current is expressed as follows:

$$I_T = q \int_{-\infty}^{q\phi_b + E_f} N_{in}(E) T(E) dE$$
⁽¹⁾

$$N_{in}(E) = \frac{4\pi mkT}{h^3} \ln\left(1 + \exp\left(-\frac{E - E_f}{kT}\right)\right)$$
(2)

where h is Planck's constant, k is Boltzman's constant and ϕ_b is barrier height at the gate/SiO₂ interface. Tunneling probability T(E) is calculated by WKB approximation :

$$T(E) = \exp\left(-2\int_0^{l_t} \kappa(x) \, dx\right) \tag{3}$$

using two-mass Franz-type κ -E dispersion relation :

$$\kappa = \frac{1}{\hbar} \frac{\sqrt{2m_{c}^{*}E'\left(1 - \frac{E'}{E_{g}}\right)}}{\sqrt{1 - \left(1 - \frac{m_{c}^{*}}{m_{v}^{*}}\right)\frac{E'}{E_{g}}}}$$
(4)

 $E' = V(x) - E + E_{e}$

[7]. V(x) is the tunnel barrier function and E_s is band gap of SiO₂ and m_c and m_y are effective mass of electron in conduction band and valence band of SiO₂ respectively. By numerically integrating T with careful consideration of the limit of tunneling length l_i , eq.(1) can be used for both FN tunneling and direct tunneling. Barrier lowering effect by image force

has a large influence on the tunnel probability [8], so it was also included in V(x) according to [9].

It is reported that there exists a "transition layer" of one atomic layer level at the interface of Si/SiO_2 [10]. This means that the barrier height does not change abruptly at the interface but is continuous in the transition layer (Fig.4). This layer does not have a large influence in relatively thick oxide, but the thinner the oxide, the greater the influence. This transition layer model was also incorporated into MIDSIP-T as a modification of V(x) in the calculation of T.

IV. RESULTS AND DISCUSSION

Parameters to be fixed are barrier height ϕ_b and effective mass m_c^* . In Fig.5, extracted m_c^* and fitting error of 10nm wet oxide sample (#11) are shown assuming t_{ar} is ellipsometric value and $\Delta x=0$. The fitting error is very small over a wide range of ϕ_b . Therefore we cannot determine a unique set of parameters from this relatively thick sample.

Then we performed t_{ox} extraction with other samples (#9, #7, #6) using each value of the (ϕ_b, m_c^*) set of Fig.5. In Fig.6, fitting error is plotted. In thinner samples, the fitting error has a minimum in each sample. If all the minimums are obtained with the same parameter set, then that set is the unique parameter set. In Fig.6, $\phi_b=3.5$ eV and $m_c^*/m_0=0.34$ gives totally good fits for these three samples. The ϕ_b value is a little bit larger than that of the literature.

In Fig.7, the same plot is shown assuming $\Delta x=0.26$ nm. By taking the transition layer into consideration, $\phi_b=3.3$ eV and m_c ? $m_o=0.41$ is obtained as the unique parameter set. Furthermore, the fitting errors of #7 and #6 are smaller than those of $\Delta x=0$. The t_{ox} extracted in the case of Fig.7 is plotted in Fig.8. A higher value of thickness is obtained with higher ϕ_b and extracted t_{ox} is

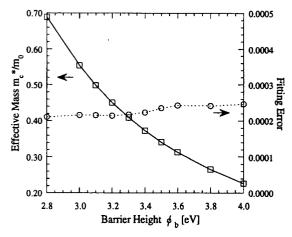


Fig.5. Result of parameter extraction using sample #11 assuming t_{ox} =10.07nm (ellipsometric value). Simulations agree with experimental data very well over a wide range of ϕ_{p} .



Fig.6. Fitting error of t_{ax} extraction of samples #9, #7, #6 assuming $\Delta x=0$.

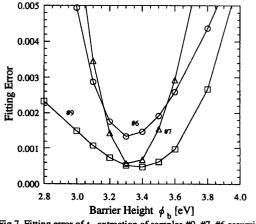


Fig.7. Fitting error of t_{ox} extraction of samples #9, #7, #6 assuming $\Delta x=0.26$ nm.

Fig.8. Extracted t_{ox} of samples #9, #7, #6 assuming Δx =0.26nm. t_{ox} of #7 and #6 are very sensitive to ϕ_{a} .

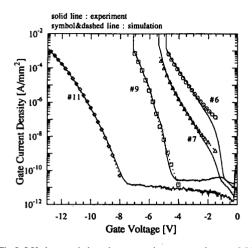


Fig.9. I-V characteristics when extracting t_{ax} assuming $\Delta x=0.26$ nm.

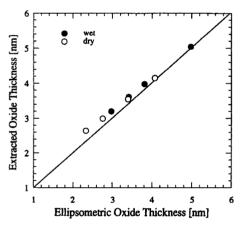


Fig. 10. Comparison of extracted t_{ox} with ellipsometric t_{ox} . Results of wet and dry oxidation samples are plotted.

more sensitive to ϕ_b in thinner samples in which direct tunneling current is observed. In Fig.9, I-V characteristics of $\phi_b=3.3eV$ and $m_c^{+}/m_o=0.41$ are shown. A very good match is seen.

The validity of assuming $\Delta x=0.26$ nm is verified by Maserjian's FN current oscillation method [10] using sample #9. Extracted t_{ox} is plotted in Fig.10 against ellipsometric t_{ox} . It is clear from this figure that the physical t_{ox} is thicker than the ellipsometric value for thinner samples. It is deduced that this difference originates in the fact that the transition layer occupies a larger portion of the whole gate oxide with decreasing oxide thickness, while the ellipsometer gives t_{ox} assuming the vertical uniformity of gate oxide.

V. CONCLUSION

We have developed a semiautomatic t_{ox} extraction system based on the nonlinear least square method. The physical oxide thickness was extracted using I-V characteristics of MOS capacitors. When QM model, image force effect and transition layer are taken into consideration, a unified parameter set for tunneling current model, $\phi_b=3.3$ eV and $m_c/m_0=0.41$, is obtained. We clarified that the physical oxide thickness is thicker than the ellipsometric value when taking the transition layer into consideration. This t_{ox} extraction system is also useful as a process variation monitor.

ACKNOWLEDGMENTS

The authors would like to thank Mr. T. Kunikiyo for designing a prototype of the parameter extraction tool, and Dr. M. Tanizawa for useful suggestions and discussion.

REFERENCES

- H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito and H. Iwai, "1.5nm direct-tunneling gate oxide si MOSFET's," *IEEE Trans. Electron Devices*, vol. 43, p. 1233 (1996)
- [2] A. Gupta, P. Fang, M. Song, M. -R. Lin, D. Wollesen, K. Chen and C. Hu, "Accurate determination of ultrathin gate oxide thickness and effective polysilicon doping of CMOS devices," *IEEE Electron Device Lett.*, vol. 18, p. 580 (1997)
- [3] A. Ghetti, A. Hamad, P. J. Silverman, H. Vaidya and N. Zhao, "Self-consistent simulation of quantization effects and tunneling current in ultra-thin gate oxide MOS devices," in Proc. SISPAD, p. 239 (1999)
- [4] K. Eikyu, K. Sakakibara, K. Ishikawa and T. Nishimura, "2-dimensional simulation of FN current suppression including trap-assisted tunneling model," *IEICE Trans. Electron.*, vol. E82-C, No.6, p. 889 (1999)
- [5] M. J. van Dort, P. H. Woerlee and A. J. Walker, "A simple model for quantisation effects in heavily-doped silicon MOSFETs at inversion conditions," *Solid-State Electron.*, vol. 37, p. 411 (1994)
- [6] P. Vande Voorde, P. B. Griffin, Z. Yu, S. -Y. Oh and R. W. Dutton, "Accurate doping profile determination using TED/QM models extensible to sub-quarter micron nMOSFETs," in IEDM Tech. Dig., p. 811 (1996)
- [7] Z. A. Weinberg, "On tunneling in metal-oxide-silicon structures," J. Appl. Phys., vol. 53(7), p. 5052 (1982)
- [8] A. Schenk and G. Heiser, "Modeling and simulation of tunneling through ultra-thin gate dielectrics," J. Appl. Phys., vol.81, p.7900 (1997)
- [9] J. G. Simmons, "Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film," J. Appl. Phys., vol.34, p.1793 (1963)
- [10] J. Maserjian and N. Zamani, "Behavior of the Si/SiO₂ interface observed by Fowler-Nordheim tunneling," J. Appl. Phys., vol. 53(1), p. 559 (1982)