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I .  INTRODUCTION and 

The full zone band structure is often needed for ade- 
quate simulation of semiconductor devices. It is impor- 
tant for devices operating under high-power, high-fields 
and determines many material properties. The computa- 
tional ease and good accuracy of the empirical pseudopo- 
tential method (EPM) make it the bandstructure method 
of choice for full-zone simulations. While the EPM works 
well for most diamond and zincblende semiconductors, 
it becomes less effective for more complicated structures 
with larger unit cells. For these materials, more EPM 
parameters must be fit while less experimental data is 
usually avaliable. Through the adaption of the nonlocal 
atomic model potential of Heine and Animalu[l], we have 
developed a model empirical pseudopotential which, by 
drastically reducing the fitting parameters needed, can 
extend the use of the EPM to semiconductors with large 
unit cells. The method is effectively applied to the band 
structure calculations of Si, C, 3C-SiC, 4H-SiC, and 6H- 
Sic  here. 

11. MODEL 

Heine and Animalu (HA) developed a nonlocal model 
atomic potential which under a local approximation, suc- 
cessfully predicted the long wavelength form factors for 
many metals[l], [Z]. The unscreened core potential was 
represented as a sum of angular-momentum-dependent, 
and thus nonlocal, square wells of depth Al, each with 
the same radius R. These parameters were then fitted to  
the experimental energy levels of the corresponding free 
ions and then adjusted appropriately to account for en- 
ergy scale changes in the metal. An approximation to 
the metal values was thus obtained by fitting to atomic 
spectroscopic data. 

To use this model to represent the empirical pseudopo- 
tential, which is truncated in reciprical lattice vector (3 
space, the Fourier transform of the potential is damped 
according to 

V(i,q) = VHA(i,q3e-"e(=)= (1) 

Where is the electron wavevector and x = (& - 1) 

1 x > o  
0 x < o  Q ( x )  = 

As appropriate for semiconductors[3], the damping fac- 
tor a is adjusted so that the potential damps to zero 
for q > 3kf ,  where kf is the Fermi wavevector, and the 
step function ensures that all truncation occurs well after 
q = Z k f .  This simple non-parameterized damping factor 
is chosen so that no new fitting parameters are introduced. 

Other alterations of the potential are the use of an ap- 
propriate dielectric function for semiconductors[4], and for 
heteropolar semiconductors, the addition of a screened 
charge transfer AZ. For an AZABs-ZB compound, this 
is estimated from the asymmetric charge coefficent g[5] 
according to 

Where Z are the valences and the screened charge transfer 
is scaled by Z, the average of the dielectric function used. 
A screened charge transfer is used since it has been used[6] 
effectively to predict ionicity in numerous semiconductors 
without first row elements. 

With these changes the atomic model potential, show- 
ing the model parameters used, for a C atom in a cubic 
semicondutor SC becomes 

Bc(q;Ac, ,Zc - A z s c , R c )  +&(4;AAc1,Rc) 
Esc ( Q )  

+ Fc(&q'; A A c , , A N L ,  R,)]  $e-usce(z)z 
SC 

(4) 

In this work SC may be either C, 3C-SiC, or, as will be 
discussed later in this section, an effective cubic potential 
for the hexagonal polytypes. The potential is scaled by 
the ratio of unit cell volume: R ,  and damped as previously 
mentioned. The local, or k independent, bare potential 
B is constructed from a local approximation to the 1=2 
square well plus the potential due to the net core charge 
(+Z, - AZ,,). F is the nonlocal bare core potential 
involving a square well of depth AAcl = A,, - Ac2. Only 

0-7803-6279-9/00/$10.00 0 2000 IEEE 

229 

http://garypOglue.umd.edu
http://neilQglue.umd.edu


TABLE I 
Model parameters in 8.u. Fitting parameters indicated with (*). 

TABLE I1 
Comparision Of Model Potential Band energies with Experiment 

Si C  3 c  4H 6H Model Exut. Model Exot. 

2.08 2.08 2.08 2.08 
2.40* 2.40 2.40 2.40 
2.00 2.00 2.00 2.00 

4.48 4.48 4.48 4.48 
0.3* 0.4* 

3.94* 4.06* 3.90* 3.93* 
1.44 1.44 1.44 1.44 

0 0 1 1 1 

the Z=1 well, representing the attractive potential due to 
the lack of p electrons in the core, is retained since it is 
the only well that differs significantly in depth from the 
AZ well. 

Following the work of HA,+the “on Fermi sphere” 
method is used to take out the k dependence and approx- 
imate F as a local function FL, but a nonlocal correction 
F N L  is also added to fine tune the bandstructures by fit- 
ting the effective masses to experiment. 

A potential similar to (1) can be constructed for Si 
atoms except that only the repulsive Z=O nonlocal core 
potential varies from Asi,  and the charge transfer in- 
creases the net core charge to (+Z,; +AZ,,). With these 
changes, the C and Si atomic potentials within C, Si, and 
3C-Sic are obtained. For the hexagonal Sic polytypes, 
the wavevectors are scaled and effective cubic atomic po- 
tentials constructed so that the cubic parameters may be 
used as a first approximation to the hexagonal parame- 
ters. 

To complete the Fourier transform of the unit cell po- 
tential, the Si and C potentials are multiplied by appropri- 
ate structure factors S,C, and S&. Summing over recpri- 
cal lattice vectors, the potential of semiconductor SC is 
then 

(6) 
SC may be Si(no C atoms used), C(no Si atoms used), or 
one of the Sic polytypes considered. For the hexagonal 
polytypes the primed wavevectors allow cubic potentials 
to be used. These electron and reciprical lattice wavevec- 
t_ors+are placed in-cubic lattice vector units according to 
I C ‘ ( @ )  = aSzb iek(Q3 ,  where us, is the hexagonal and 
aSCcubic the cuhc phase lattice constant. This takes into 
account differences in the density of wavevectors in the 
polytypes. Further differences in the bandstructure are 
accounted for by fitting of the parameters. For heteropo- 
lar semiconductors such as the Sic polytypes considered 
here, the potential can then be conveniently reorganized 

Si 

G a p  1.10 1.128 LBC 

r15c 3.56 3.358 L3, 
rlu -12.52 -12.56a L1, 

rzc 4.04 4.16’ Lzv 
Llc 2.09 2.05a X4,, 

4.16 3.91a 
-7.24 -6.82a 
-1.22 -1.228 

.10.17 -9.34a 
-2.94 -2.90a 

3 C - S i c  C  

Xlc  2.30 2.3gb EgaP 5.50 5.51‘ 
x 3 c - x l c  2.74 3 . 1 0 ~  rlu -28.47 -21.00e 
rlc 5.73 6.0b r15c 7.12 7f(6e) 
Llc 3.95 4.2ob rZc 10.66 i5.35e 
Xlc-LBv 4.33 3.55b L1, -15.85 -12.83e 

4H-SIC 6H-S ic  

Eoan 3.20(M) 3.26g(M) 3.00(L) 3.02g(M-L) 

Unless a difference in two band energies is indicated, all band 
energies are relative to the valence band maximum at r. 

aReference 7 
bReference 8 
%eference 9 
dReference 10 
eReference 11 
‘Reference 12 
BReference 13 

in terms of symmetric and asymmetric potentials as in 
the EPM. 

111. RESULTS 

For C and Si, with the exception of the carbon core 
radius R,  which was chosen 4% less than the HA result, 
the HA results were used for the first approximation of 
the model parameters. One parameter, A,, was then ad- 
justed to fit the local model potential to experimental 
band energies of Si and C. For C, A,, was increased from 
the HA value by 21%, while for Si, Asi2 was decreased by 
less than 2%. For all the semiconductors considered, the 
model parameters used are shown in Table I, plots of the 
bandstructure along symmetry lines of the Brillion zone 
are displayed in Fig. 1-5, and comparison with experimen- 
tal band energies is made in Table 11. For Si agreement 
with experiment is very good but for C, the results de- 
viate away from the bandgap. Similar results for C have 
been attained using the EPM[12] and are primarily due to 
the weakness of local approximations to the strong non- 
local Z=1 core potential. The potential is adequate for 
device simulations though, where the region of interest is 
primarily close to the bandgap. 
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Fig. 1. Si model bandstructure 
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Fig. 2. C model bandstructure 

For the Sic polytypes, the charge transfer AZ,;, was 
included and all of the Si and C local potential parameters 
were retained as a first approximation. Local bandstruc- 
tures were then obtained by slightly adjusting A,, by 3% 
or less to fit the bandstructure to experiment. Since the 
effective masses for 3C and 4H were significantly larger 
than experiment along the direction towards the center 
of the Brillouin zone, nonlocal corrections were included, 
introducing a second fitting parameter A::. This also in- 
volved a slight readjustment of A,, in 4H. The conduction 
band minima, found at X in 3C, M in 4H, and L in 6H, 
agree well with experiment[8], [13]. In density function 
theory bandstructures[l4], [15], the 6H minimum is usu- 
ally found closer to the M point along M-L,  but as found 
here the lowest conduction band is extremely flat along 
M-L,  varing by less than . lev.  The model potential re- 
sults are consistent with experiment[l6] though since the 
exact postion of the minimum along the M-L symmetry 
line has not been determined. 

Comparison with experimental effective masses is made 
in Table 111. A large longitudinal mass and a smaller trans- 
verse effective mass relative to the X - r  direction are found 
for 3C, agreeing with experiment. Greater anisotrophy is 
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Fig. 3. Local(-) and nonlocal(- -) 3C-Sic model bandstructure 

TABLE 111 
Comparision Of Model Potential Effective Masses with Experiment 

3C-Sic 4H-Sic 6H-Sic 

m;(model)  0.24 f O.O2(XW) 0.60 f 0.05(Mr) 0.90 f 0.03(LA) 
m; (exp.)  0.247a(XW) 0 . 5 8 ~ ( ~ r )  

m;(model) 0.24 f O.O2(XW) 0.20 f 0.02(MK) 0.22 + 0.02(LH) 
m;(exp.) 0.2478(XW) 0.2gb(MK) 

m;(model) 0.70 f 0.06(Xr) 0.36 f 0.02(ML) 1.43 f 0.02(LM) 
m; (exp.) 0.667&(Xr) 0.33b(ML) 

0.35 f 0.02 
0.42c 0.42c 

0.31 f 0.05 1.14 + 0.14 
O.2gc 2.0 f 0.2c 

0.44 f 0.02 

aReference 15 
bReference 16 
Tkference 17 

found for the hexagonal polytypes. For 4H, a large mass is 
found along M - r ,  while smaller yet clearly distinct masses 
are found in the transverse directions. Agreement with 
experiment is good except for a slightly lower fitted mass 
along the M - K  direction. For 6H an extremely large ef- 
fective mass is found along the L-M direction. The mass 
along L-H is quite small while the mass along L-A is large 
but still much smaller than the in L-M mass. 

The experimental values of m l  and mll in Table I11 
were obtained by experiments[l9] in which variations in 
the effective mass as determined for magnetic fields in the 
plane perpendicular to the c direction where not resolved. 
These “in-plane invariant” [18] effective masses were then 
approximated from the model bandstructure for compari- 
son. For 6H, m l  is fitted well, whereas mll is found to be 
much lower than experiment. This may result from band 
filling complications due to the flat bandstructure along 
M-L.  The 6H masses although are found to be consistant 
with work done using density function theory[l8]. 
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Fig. 4. 4H-SIC model bandstructure 
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Fig. 5. 6H-Sic model bandstructure 

IV. CONCLUSION 

By fitting one parameter in the HA potential and 
adding charge transfer we are able to attain a local model 
potential which can be brought to agreement with ex- 
perimental data for Si, C(around the bandgap), and the 
Sic polytypes. This potential is amended by a nonlocal 
correction to fine tune the bandstructures if necessary, 
and is used to fit the S ic  effective masses to  experiment. 
The model allows the extentsion of the EPM to materials 
where many more form factors parameters are need than 
avaliable data. The model can be attained for increas- 
ingly complex unit cells through transferability. This is 
demonstrated by the use of essentially the same poten- 
tials i n  Si and C for the SIC polytypes considered, with 
slight adjustment of one fitting parameter to account for 
changes in the potential. 
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