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Abstract: 

This paper presents a method for optimum place- 
ment of nodes in grid generation for process sim- 
ulation together with an algorithm for updating 
the grid after each addition of a new node to ensure 
that the Delaunay property is satisfied. Placement 
of nodes is decided on by considering the optimum 
error in evaluating the integral sv C(z)dz. The best 
error estimate is obtained when the node coincides 
with the centroid (the center of mass) of its own 
Voronoi region and moreover when the Voronoi 
region is symmetric. After addition of a node the 
grid is updated to maintain the Delaunay property 
using the Delaunay-Voronoi algorithm. 

I t  ro duct ion 

In process simulation, we are concerned with solving the 
diffusion equation 

_ -  a' - V.(DVC), t 2 0, z E Q c Rd, d = 2,3 
8t 

where D is the diffusion coefficient. In solving the problem 
numerically, we are concerned with the error in computing 
the integral sv C(z)& where V is the region of influence 
of the node Z (the Voronoi region (see [4])  of the node 
Z.) Previously, we have considered the problem of node 
removal in a grid where mesh is too fine for the problem, 
(see [I], [2], and [3].) The removal algorithm identified 
nodes to be removed by their low discretizaton error. We 
now turn our attention to addition of nodes. When a grid 
is adapted, new nodes are added in areas where, due to 
larger variation in C(Z), it is deemed that greater resolu- 
tion is needed. To decide on the optimum placement of 
these new nodes, we consider which position will give the 
best error in evaluating Jv C(z )dx .  

The best error for this calculation is O(h3k, hk3) when 
C(z) is approximated by its Taylor series evaluated at the 
node f , the generator of the Voronoi region V, and more- 
over, when the node is the centroid (center of mass) of its 
own Voronoi region. Such a Voronoi tesselation is called 
a centroidal Voronoi tesselation. (see [5]). After addition 
of a new node, the grid quality must be maintained. A 
desirable property of the grid is that it has the Delaunay 
property. The grid is updated, after addition of each new 
node, to ensure that it has the Delaunay property. The 
algorithm to achieve this is called the Delaunay-Voronoi 
algorithm. 

The actual position of a new node is at the centroid 
of surrounding nodes to ensure that the node is at the 
centroid of its own Voronoi region. This position is decided 
on by wnsidering the smallest order error in evaluating the 
integral Jv C(z)dz using a Taylor series as stated a h .  
Hence the error in evaluating Jv C(z)dz is used as an error 
indicator in deciding on the positioning of nodes. 

In adding nodes during grid adaption, a check is used 
whereby a new node is added if and only if the geometric 
grid quality is i m p r d .  If the geometric grid quality is 
not improved, then the new node is not added. 

Error Indicator for Evaluation of s, C(z)dz 

The best error for this calculation of JvC(z)dz.is 
O(h3k, hk3), when C(z) is approximated by its Taylor se- 
ries evaluated at the node Z , the generator of the Voronoi 
region, V, and moreover, when the node is the centroid 
(center of mass) of its own Voronoi region. 

In fact, in two spatial dimensions, we have that 

O(h4k, hk4, h3k2, h2k3) 

and so 
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where & C(z)dz N 4C(Z)hk, and 80 the error is seen 
to be 

Notice that the condition of symmetry of the Voronoi r e  
gion is what causes cancellation of the terms involving h2k, 
hk2, and h2h?. 

Centroidal Voronoi Tesselations 

A centroidal Voronoi tesselation is a Voronoi tesselation 
where the generators of the Voronoi cells and the centroids 
of those cells coincide (see [5]). 

To generate a centroidal Voronoi tesselation, (see Fig- 
ure 1 for a Voronoi tesselation versus a centroidal Voronoi 
tesselation) we add new nodes at the centroid of surround- 
ing nodes. In fact, given points pi, i = 1,2,...,N and 
j-~ = & xEl pi, the centroid of these points, I, will be the 
centroid of its own Voronoi region. i.e. if we generate a 
grid where points are added at the centroids of surrounding 
points, then we will generate a centroidal Voronoi tessela- 
tion. 

Dehunay-Voronoi Algorithm 

To maintain good grid quality after addition of a new node, 
we need to update the grid so that it is Delaunay at each 
stage. In 2-dimensions1 the Delaunay triangulation is the 
dual of the Voronoi tesselation,(see Figure 2). A property 
of the Delaunay triangulation is that the circumcircle (cir- 
cumsphere in %dimensions) of the nodes contained in a 
face of the triangulation does not contain any of the other 
nodes. This property can then be used to update the grid 
at each stage to ensure that it has the Delaunay prop 
erty. We test each face to see if the circumurcle(sphere) 
of the face contains the newly added node, (see Figure 
3). The faces associated with the circumcircles (spheres) 
which contain the newly added node are glued together in 
a l1 Big Face”. The newly added node is moved to the cen- 
troid of the ”Big Face”. We iterate the algorithm, testing 
the remaining face to see if the centroid of the new ”Big 
Face” lie in the circumcircle of any other faces. When 
the centroid of ”Big Face” is not contained in the circum- 
circle of any other faces, ”Big Face” is regridded using its 
centroid. This algorithm ensures that the grid is Delau- 
nay after each addition of a node, and also ensures that 
the new grid generates centroidal Voronoi regions. This 
strategy means that it is also easy to interpolate the con- 
centration to conserve the dose. The algorithm is known 
as the Delaunay-Voronoi algorithm, (see [SI). 

Computing the Delaunay triangulation for N nodes 
has computational complexity O(N log N). This computa- 
tional complexity is greatly reduced by updating the grid 
after each addition of a node. In fact, the number of faces 
whose circumcircles contain the newly added node is con- 
stant and so the computational complexity of maintaining 

a Delaunay grid after addition of nod- is linear in the 
number of newly added nodes. 

Incorporated in the algorithm is a check, whereby a 
new node is added if and only if the geometric grid quality, 
Q, for the ”Big F’ace” is improved by adition of the new 
node. 

Geometric Grid Quality 

The geometric grid quality of a collection of faoes 
{Fl ,  F N } ,  where A; is the area. of the face Fi, and the 
face Fi has sides of lengths l ; ~ ,  &a, and Ii3, is defined by 

It is expected that a centroidal Voronoi mesh will have 
excellent quality. For example, a perfect equilateral trian- 
gular mesh (Q = 1) is also centroidal. In test examples, 
(see Figures 4 and 5 )  geometric grid quality is seen to be 
improved when this algorithm is used, (see Figure 6 for 
percentage improvements in geometric grid quality con- 
cerning a particular input). Figures 4 and 5 show a spacer 
where the poly has ben finely gridded and adapted. The 
coarsely gridded oxide has also been adapted. Figure 4 
uses the Delaunay Voronoi algorithm and Figure 5 does 
not. 

Conclusions 

We propwe that grid should be adapted with addition 
of nodes at the centroid of mounding nodes to generate 
Voronoi regions which are centroidal. Improvement in the 
error indicator function is ensured by this positioning of 
the new nodes and nodes are added if and only if the ge- 
ometric quality is improved. 
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Figure 1: Voronoi versus centroidal 
Voronoi tesselations. 

I I 

Fimre 2: Delauney triangulation 
dual of the Voronoi diagram. 

Figure 3: Delauney - Voronoi 
algorithm. 

Figure 4: Grid with use of 
Delauney-Voronoi algorithm 

Figure 5:  Grid without using 
Delauney-Voronoi algorithm. 

Figure 6: 
Immovement : 
Max. int. angle:54% 
Min. int. angle: 97% 
Avg. element qual.:50% 
Element qual> (worst): 77% 
Element qual. (best): 15% 
Joint qual.: 75% 
Qual. c0.3: 16% becomes 0% 
Qual. > 0.6: 28% becomes 86% 
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