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Abstract-A nonlinear three-point discretization 
of the density-gradient equations is presented. 
The new method, an exponential-fitting scheme, i s 
evaluated using numerical examples i nv o 1 v i  n g  
both quantum confinement and tunneling. The 
nonlinear discretization is shown to perform far 
better than the conventional linear version a l low-  
ing for a substantial easing in the mesh refinement 
especially in tunneling problems. 

I. INTRODUCTION 

Density-gradient (DG) theory enables engineering- 
oriented analyses of electronic devices in which quantum 
confinement and tunneling phenomena are significant [ 1-31. 
Recently this approach has moved closer to practicality with 
its application to confinement problems in multi- 
dimensions by several groups [4,5]. The density-gradient 
term that represents the quantum effects in the governing 
equations is a singular perturbation that gives rise to a very 
thin boundary layer that exists inside the normal Debye 
boundary layer of the classical theory [6]. Within a DG 
boundary layer, e.g., in a tunnel barrier, the carrier densities 
can vary by orders of magnitude on an Angstrom scale. To 
resolve this physics a very fine grid is required and this is 
especially important if the tunneling currents are to be com- 
puted accurately. In previous work [ 1-31 we have employed 
a standard linear centered discretization for such problems and 
found it to be accurate but only when exceedingly fine 
meshes are used, e.g., with mesh spacings as small as 
0.0lA. This situation was manageable for 1-D cases, how- 
ever, for multi-dimensional applications it could impose a 
significant burden. Hence our interest in non-linear discreti- 
zations. 

11. DENSITY-GRADIENT THEORY 

DG theory is a macroscopic approximation to quantum 
mechanics in which the nonlocality of quantum mechanics 
enters the theory solely via an assumption that the equations 
of state of the electron and hole gases depend not only on the 
gas densities as in diffusion-drift theory but also on the gm- 
dients of their densities [l]. The theory built on this simple 
foundation, though obviously incomplete, has been found to 

be surprisingly accurate for describing effects of quantum 
confinement and tunneling in a number of practical situa- 
tions. Furthermore, because of its simplicity the theory can 
more readily and efficiently incorporate other complications 
of real devices such as multi-dimensionality that are not so 
easily treated by alternative microscopic theories. Finally, 
and of most relevance to this paper, since DG theory is a 
generalization of standard diffusion-drift theory, it fits natu- 
rally into the framework of conventional device simulation 
and many of the well-known ideas and methods of the latter 
carry over directly. 

Considering only electrons and neglecting inertia the 
governing differential equations of DG theory (in 1-D) are 

J = pnn@x - Dnnx , Jx = -R 

$bsxIx + v - @ = 0, s =fi 

[&vxIx = q(n - ND) 

As discussed in Ref. 2 the equations appropriate for describ- 
ing the transport inside tunnel barriers are slightly more 
complicated in that the electron gas splits into fotward- 
tunneling and back-tunneling electrons. Nevertheless, the 
form of the equations remains the same and so this issue 
need not be discussed here. Similarly, the boundary condi- 
tions are exactly as described in Ref. 2 and therefore they 
need not be treated explicitly here either. The neglect of 
inertia in the above equations means we have subsumed its 
effect into "virtual anode" boundary conditions, an issue also 
discussed in Ref. 2. In the numerical simulations of this 
paper all of these considerations are included. The full sys- 
tem of equations with equations describing electron and hole 
transport and electrostatics are solved simultaneously. 

111. NON-LINEAR DISCRETIZATION 

With respect to the electron current equations, (1)* with 
(l),, a nonlinear discretization is already very well-known in 
the form of the Scharfetter-Gummel scheme [7,8]. Indeed 
this was the key discovery that made diffusion-drift analysis 
the standard approach to multi-dimensional device simula- 

0-7803-6279-9/00/$10.00 0 2000 IEEE 

196 

mailto:ancona@estd.nrl.navy.mil


tion for more than 30 years. This scheme belongs to the 
general class of numerical techniques for solving partial dif- 
ferential equations known as exponential-fitting methods [9]. 
It gains its efficiency by building in a priori the exponential 
dependence of the carrier densities on potential. This im- 
provement in the representation of the solution functions 
translates into a scheme which can achieve greater accuracy 
and stability on coarser meshes. Of course, on finer meshes 
the advantage of the nonlinear method degrades because 
linearization starts to become a better approximation. For 
the electron current equation the Scharfetter-Gummel dis- 
cretization is [7] 

where 

and Fi+i,2 is a numerical factor that equals one in the Max- 
well-Boltzmann case and is density-dependent in the Fermi- 
Dirac case [lo]. The nonlinearity in this scheme enters 
through the Bernoulli function B(y) which is plotted in Fig. 
1. As discussed in Ref. 8 this function can be viewed as 
stabilizing the scheme by adding in numerical diffusion 
when is large. 
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Fig 1 The functions B(y), f(z) and g(z) versus the normalized differ- 
ences in 41 and s between gnd points. As As increases the DG discretiza- 
tion becomes increasingly diagonally dormnant. 

The physics of the DG equation (l), produces similar 
exponential character in the solution functions (especially in 
tunneling situations) and building this behavior into the 
numerical scheme can be expected to have similar benefits. 
However, a numerical implementation directly analogous to 
Scharfetter-Gummel does not appear to be feasible in the DG 
case. The problem is that in diffusion-drift theory the diffu- 
sion is balanced by drift so that, although the carrier density 
varies exponentially, its associated current density varies 
only slowly and so can be given a linear discretization. In 
contrast, in DG theory there is no mathematical equivalent 

to "drift" so the theory's equivalent "current" also varies ex- 
ponentially and hence it too must be given an exponential 
discretization. Therefore to develop an exponential-fitting 
scheme for the DG equation (I), we instead start by assum- 
ing that the solution between grid points i-1 and i+l is of 
the form: 

s = Aeax for x E [xi-l,xi] 

s = BeeX for x E [xi,xi+l] 
(3) 

This obviously allows for a much better representation of 
the exponential character of the DG boundary layer. The 
four parameters A, B, a and p are determined by equating s 
to its grid point values at i-1, i and i+l. Then integrating 
the DG equation (l), from i-112 to i+1/2 and assuming that 
in this region @ - y ~  E (@-y~)~, we obtain the nonlinear dis- 
cretization 

where the functions 

are plotted in Fig. 1. For small z these functions approach 
one and the scheme reduces to the linear centered discretiza- 
tion while for larger z the nonlinearity leads to increased 
diagonal dominance. 

One final point conceming these discretizations, 
whether linear or nonlinear, is that in diffusion-drift theory 
(i.e., with b = 0) @ = y. so (2) inserted into a discretized 
version of (1)2 is a finite difference equation for n and the 
discretized version of (l), is the equation for y ~ .  In DG the- 
ory instead, (1X is again the equation for y~ but since @ ,, 
y ~ ,  (1)2 with (2) becomes the equation for @ and (4), derived 
from ( l),. is the equation for n. 

Iv. SIMULATION RESULTS 

As a primary test problem for the nonlinear discretiza- 
tion we study MOS capacitors both with and without tun- 
neling in 1-D. In Fig. 2 the carrier concentration profiles 
calculated by DG theory for a non-tunneling capacitor biased 
into inversion (holes) are shown. The decline in the hole 
density near x = 0 is caused by the quantum repulsion asso- 
ciated with the Si-Si02 bamer. In the Figure we compare 
the carrier concentrations obtained using a coarse grid with 
11 points spread non-uniformly over 0.5pm and employing 
the linear and nonlinear discretizations with an "exact" result 
computed using a fine grid (145 points). Both the linear and 
nonlinear discretizations do quite well, however, the nonlin- 
ear version does do significantly better especially at lower 
densities. This is seen more clearly in a plot of the relative 
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Fig. 2. Comparison of carrier density profiles computed with linear and 
nonlinear discretizations for a 0.5pm thick inverted semiconductor using 
1 I non-uniform grid points. 
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Fig. 3. Relative error in carrier densities computed by DG theory for the 
device of Fig. 2 using linear and nonlinear discretizations. The errors 
occur where the carrier densities change most rapidly and are considera- 
bly larger for the linear discretization. 
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Fig. 4. Band dia ram and electron concentration profiles in a silicon 
(100nm)-oxide (3O%)-silicon (100nm) structure as computed by DG the- 
ory on a fine grid. 
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Fig. 5. Forward and backward electron density profiles computed with 
linear and nonlinear discretizations on a coarse grid (triangles) with 12 
grid points in the 3nm barrier and 13 in each lOOnm thick semiconductor 
region. 

errors shown in Fig. 3. As expected, the biggest errors oc- 
cur when the change in density between grid points is larg- 
est. 

In Figs. 4 and 5 the calculated band diagrams and elec- 
.&on concentrations are plotted for an SOS capacitor with a 
30A gate oxide biased at - l V  and with tunneling included. 
That tunneling is occuring is evident from the exponentially 
decaying electron concentration profiles (for forward and 
backward electrons [2]) inside the barrier. The expanded 
view in Fig. 5 compares the "exact" solution (258 oxide 
mesh points) for the electron densities with results obtained 
using a coarse grid with 12 mesh points distributed non- 
uniformly in the oxide and using both linear and nonlinear 
discretizations. For this tunneling situation the superiority 
of the nonlinear discretization is even more pronounced. 
Most importantly, the current density through the barrier is 
proportional to the carrier densities at the "downstream" end 
of the barrier. So for example the current associated with 
electrons tunneling from right to left (the dominant process 
under these bias conditions) will be proportional to the left- 
going electron density at the left end (x = 0) whose "exact" 
value in this case is 3 . 3 ~ 1 0 ~ c m . ~ .  But notice that it is at 
this point that the largest relative discrepancy between the 
linear and nonlinear discretizations occurs. In effect, the 
errors accumulate as one moves across the barrier by virtue 
of the hyperbolic nature of the equations inside the barrier. 
And so the calculated current is especially sensitive to dis- 
cretization error. Because of this and because the I-V charac- 
teristic is typically what one is most interested in determin- 
ing, the error criterion on the current generally dictates the 
mesh refinement. And with a linear discretization it tums 
out that to obtain reasonable accuracy in the current can re- 
quire mesh spacings as small as 0.0lA. (With a uniform 
grid such a small mesh spacing would be almost unwork- 
able; however, the mesh refinement is most critical near the 
downstream edge and so, by using a non-uniform grid, one 
can reduce the computational burden significantly). The 
nonlinear discretization dramatically eases the grid 
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Fig. 6. Relative error in tunneling current densities computed by DG 
theory for the device of Figs. 3/4 using linear and nonlinear discretizations 
as a function of the number of barrier grid points. The maximum A d s  is 
also shown. 

requirements for accuracy in the computed current. To illus- 
trate the benefits of the nonlinear discretization on the calcu- 
lation of current, in Fig. 6 we plot the errors in the current 
as computed with both the linear and nonlinear discretiza- 
tions as functions of the number of (non-uniform) grid 
points in the barrier. The nonlinear discretization far outper- 
forms the linear version. Also shown in the Figure is the 
maximum relative difference in s between adjacent grid 
points showing that the discretization is indeed strongly 
nonlinear. 

It should be recognized that the simulations of Figs. 2-6 
test primarily the discretization of the DG equation (1)3 be- 
cause its resolution requirements are such that a linear dis- 
cretization of the current equation (1)* with ( l ) ,  will be acb 
quate. The main reason for continuing to use a nonlinear 
(Scharfetter-Gummel) discretization for the current equations 
is that in a typical device in which quantum effects are im- 
portant, e.g., an EEPROM, large portions of the device ac- 
tually operate in a classical (diffusion-drift) regime. And for 
the simulation in these regions one would want to use the 
relaxed grids made possible by a nonlinear discretization of 
the diffusion-drift equation. 

Finally, we remark that just as with the Scharfetter- 
Gummel discretization, the primary benefit of the nonlinear 
discretization of the DG equations is increased efficiency 
which will be especially pronounced in multi-dimensions. 
To explore the cost savings involved, efforts are currently 
underway to carry out 2-D and 3-D device simulations in 
which the new nonlinear discretization will be used. For 
this purpose, we are employing the flexible simulator 
PROPHET developed at Lucent Technologies [4]. 

V. SUMMARY 

In this work we have demonstrated the efficacy of a non- 
linear discretization for the numerical solution of the den- 
sity-gradient equations. The nonlinear discretization is an 
exponential-fitting scheme that has essentially the same 
motivation as the conventional Scharfetter-Gummel discreti- 
zation, although its derivation and details are somewhat dif- 
ferent. We have illustrated the new method in both quantum 
confinement and tunneling situations. The method allows 
rather coarse grids to be used with DG theory and thereby 
increases the viability of this theory from a computational 
standpoint in multi-dimensions. 
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