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Absrrucr-This paper presents the two dimensional, quan- 
tum mechanical simulation of scaled “Well-Tempered MOS- 
FETs” featuring different effective channel lengths in the 
deep sub-micron range. The simulation results were ob- 
tained by means of a two-dimensional Schriidinger solver 
that had been previously applied to idealized MOS struc- 
tures. Comparison between one- and two-dimensional ap- 
proaches is presented, and the difference between the two 
models are highlighted. 

I. INTRODUCTION 

HE successful design of nano-scale MOSFETs [l] T and the demands of the SIA Roadmap in terms of 
device features and deadlines for future technologies [2], 
constantly stimulate the research towards the development 
of predictive simulation models, to describe quantitatively 
device operations at such reduced channel lengths (LE ). 

Recently, an open-forum for the validation of different 
modeling tools has been proposed [3], and the paraphras- 
tic epithet of “Well-Tempered MOSFET” (WTM) has been 
forged to refer to a class of well-designed, hopefully well- 
behaving n-channel MOSFETs, whose ultimate perfor- 
mance limits are being demonstrated [41,[51. 

In this paper we would like to contribute to the discus- 
sion, presenting the two-dimensional (2D) quantum me- 
chanical (QM) simulation of WTMs of different L,K, ob- 
tained by using the 2D Schrodinger solver described in [6 ] ,  
previously applied to idealized MOS structures. 

In the following, a brief summary of the physical and 
numerical features of the simulator will be presented, then 
results from the 1D and 2D models will be shown, and the 
difference between the two approaches will be analyzed. 

11. PHYSICS A N D  NUMERICS SUMMARY 

While the 1D [7], [8] or quasi-2D [SI, [lo] simulation 
of QM effects in MOS transistors is rather assessed and 
viable even for development purposes, the 2D QM sim- 
ulation is still at a preliminary stage, owing to its heavy 
computational and memory requirements. 

Since a fundamental step for the first-principles solution 
of the QM problem is to solve the Schrodinger equation, to 

partially overcome the aforementioned limitations without 
resorting to specific or simplified approaches [l l] ,  [12], 
[13], we developed a solver for the 2D Schrodinger equa- 
tion in the {p}-representation [6], which we apply here to 
the simulation of nano-scale WTMs. 

The simulator solves the Schrodinger equation project- 
ing the solution on the basis of the unperturbed Hilbert 
space of a closed-boundary system. In other words, the 
following representation for the unknown eigenfunction 
\ k ~  relative to the H-th eigenvalue is assumed: 

M,N ( M x N )  

*H(z,Y) = C~:y’4ij = C AHK+K = 
i,j K = l  

( M x N )  
= AHKszn(ki x) . sin(kj y) (1) 

where M and N are the number of the discretization points 
in the z and y directions, AHK is the amplitude of the K-th 
component 4~ of the searched solution \EH relative to the 
H-th unknown eigenvalue C H ,  k, = R d/L,, kj = R j / L y  
are the x and y components of the k-vector, and L,, L, 
are the dimension of the simulation domain. Substituting 
this expression of \ k ~  into the Schrijdinger equation, the 
following linear system of equations is obtained: 

K=l  

x A H K = O  (2) 

where H = l,..(M x N ) ,  ~ H K  is the Kronecker delta, 
(A4 x N) is the 2D discrete grid, mk is the effective elec- 
tron mass in the free direction (z)  for the H-th eigenvalue 
of the valley the electron belongs, and: 

VHK = ( ~ H I V I ~ K )  = ~ H V ( ~ , Y M K  dxdy = SJ 
= 1 F H ( ~ , ~ M K  dxdy (3) 

is the matrix element of the electrostatic potential in 
the {p}-representation which we efficiently computed by 
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means of two-dimensional fast-Fourier transform (FFT) of 
the (MxN)  functions F ~ ( z , y )  = q5HV(s,y),performed 
using the code described in [14]. 

It must be noticed that the spectral expansion (1) allows 
to reconstruct @ H  in points of the real space which are not 
necessarily coincident with those of the discretization grid, 
thus enabling to evaluate the quantities of interest (e.g. the 
electron concentration) even on finer meshes than those 
used for the QM solution. 

The linear system of equations (2) is then solved us- 
ing standard libraries [15], thus obtaining the (M x N )  
eigenstates of the system under investigation. The ac- 
curacy of the solution against grid dimensions was ver- 
ified. Consequently all simulations were performed us- 
ing a 60x60 discretization grid, i.e. finding the eigen- 
values and eigenvectors of a 3600x3600 matrix. The re- 
sulting numerical workout was M 7 hours per simulation 
on a SPARC ULTW170 workstation, equipped with a 
163 MHz UltraSPARC processor rated at 252 SPECint92 
and 351 SPECfp92, and 1 GBytes RAM. 

111. SIMULATION RESULTS 

In the modeling framework described above, we sim- 
ulated four different nano-scale MOS transistors, featur- 
ing Lea = 90, 25, 15, and 10 nm. The two longer devices 
can be properly considered WTMs, since they were ob- 
tained directly from [3], while the two shorter ones were 
derived shrinking the 25 nm WTM profile down to 15 nm 
and lOnm, as described in [3]. Since no optimization of 
the two shorter structures was done, the quasi-WTM de- 
nomination may be somehow more appropriate for such 
devices. 

We also simulated an “abrupt-junction, no-HALO” ver- 
sion of the two quasi-WTMs, to emphasize the 2D na- 
ture of the electrostatic potential around the junctions, as 
it could originate from substantial short channel effects 
(SCE). For this reason, we will call them non-WTMs in 
the following. 

The Poisson-Schrodinger self-consistency was not in- 
cluded in the simulation scheme of this paper. Its inclu- 
sion, however, would change only the quantitative mean- 
ing of the comparison, while its qualitative significance, 
that is to point out the possible origin of mutual discrepan- 
cies between of the 1D and the 2D approaches, still main- 
tains its validity. 

Given the reason above, only non self-consistent solu- 
tions of the ID and 2D Schradinger equations were ob- 
tained in the different devices (which were biased at VDS 
= 0 V, VCS >VTH ), and the Fermi levels were used as a fit- 
ting parameter to obtain a quantitative agreement between 
the QM electron concentrations computed by the 1D and 

2D models in the source of each simulated structure. 
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Fig. 1. QM electron concentration along the channel of 
the 90 nm (left) and 25 nm (right) WTMs obtained from 
[3]. The 1D (solid line) and 2D (symbols) solutions are 
compared. The oxide thickness is tax = 4.9 nm for the 
90 nm WTM and tox = 1.5 nm for the 25 nm WTM. 

Fig. 1 shows the ID and 2D electron concentrations 
plotted along the 90 nm (left) and 25 nm (right) structures, 
biased above threshold, at the y coordinate of the 1D QM 
carrier concentration peak. The 2D curve was obtained 
plotting the 2D concentration along the longitudinal line 
at such fixed y depth, while the 1D curve was obtained 
taking the 1D QM value at the same y coordinate, as ob- 
tained from a transverse 1D Schrodinger simulation at the 
different x sections. As can be seen, no substantial differ- 
ence is observed between the 1D and 2D solutions in these 
rather long WTM. 
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Fig. 2. QM electron concentration along the channel of the 
15 nm (left) and 10 nm (right) quasi-WTMs. The MOS 
doping profiles were obtained as a technology shrink 
from the 25 nm WTM, as specified in [3]. The 1 D (solid 
line) and 2D (symbols) solutions are compared. The 
oxide thickness is tox = 1.5 nm for both devices. 

Instead looking at Fig. 2, refemng to the 15 nm (left) 
and 10 nm (right) quasi-WTM, discrepancies between 1D 
and 2D solutions can be found, both around the junctions 
and inside the channel. 

The effect is even more pronounced in Fig. 3, where the 
situation for the 15 nm (left) and 10 nm (right) non-WTM 
is depicted. This is due to the presence of SCE and of 
a quasi punch-through situation, resulting in a strong 2D 
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Fig. 3. QM electron concentration along the channel of 
the 15nm (left) and lOnm (right) non-WTM. The MOS 
structures feature constant bulk doping (5x lo1* cm-3 
), i.e. no HALO implants, and abrupt source and 
drain junctions. The 1 D (solid line) and 2D (symbols) 
solutions are compared. The oxide thickness is tox 
= 1.5 nm for both devices. 
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Fig. 4. The longitudinal electrostatic potential of the 10 nm 
quasi-WTM (solid line) and non-WTM (dashed line). 
The longitudinal section has been taken at the y coor- 
dinate of the 1D concentration peak. 

distribution of the electrostatic potential in proximity of 
the junctions. 

To clarify this point, Fig. 4 shows the longitudinal elec- 
trostatic potential of the lOnm quasi-WTM and non- 
WTM, taken at the y coordinate of the 1D concentration 
peaks, while Fig. 5 shows the transverse electrostatic po- 
tential of the same devices taken at their mid-channel sec- 
tions. A steeper longitudinal profile and a broader inver- 
sion layer can be observed in the non-WTM device, re- 
sulting in an enhanced 2D character of the electron con- 
centration. This is a consequence of the absence of HALO 
extensions in this latter device. 

As can be seen, the 2D character of the solution cannot 
be captured neither by a single 1D Schrodinger solution 
at mid channel [ 161 nor by a quasi-2D approach based on 
1 D Schrodinger solutions at different x coordinates [ 101. 
Consequently, these results suggest the need of the accu- 
rate QM description of the charge and potential profiles 
around the junctions, especially for the precise prediction 
of SCE and charge injection into the channel, that criti- 
cally depend on the actual shape of the source-to-channel 
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Fig. 5. The transverse electrostatic potential of the 10 nm 
quasi-WTM (solid line) and non-WTM (dashed line). 
The transverse section is taken at mid-channel. 

barrier. In addition, QM carrier penetration from source 
to channel, adding to thermionic injection, is a further ef- 
fect that ID or quasi-2D quantum approaches will neglect, 
which instead may be of relevance in designing the next 
generation ultra-short WTMs. 

To be more confident on the obtained results, we also 
compared the 1D and 2D solvers in regions of the device 
where no difference was expected. such as inside the de- 
vice source, where no 2D effects are normally present. As 
a result, the different numerical accuracy of the 1D and 2D 
Schrodinger solvers cannot be invoked to explain the high- 
lighted differences between the ID and 2D QM solutions. 

Fig. 6. The electron concentration inside the source of the 
lOnm quasi-WTM, as computed by the 1D (dashed 
line) and 2D (symbols) Schrtjdinger solvers. The 1D 
self-consistent solution (solid line) is also shown. 

In fact, a part from the relative adjustment of the Fermi 
levels, the two methods agree in computing the vertical 
electron concentration profile inside the transistor source, 
as can be seen in Fig. 6 for the lOnm quasi-WTM (com- 
pare solid line and open circles). Here, the 1D self- 
consistent QM solution was also included, showing the 
charge accumulation at the Si-Si02 interface due to the 
presence of the surface hard-wall boundary condition en- 
forced to the electron wave-functions by the high Si-Si02 
barrier. The constraint of zero wave-function at the sur- 
face, hence zero charge, forces the potential to increase, 
thus inducing a very thin accumulation layer. This re- 
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sult suggests the need of a self-consistent iteration between 
Poisson and Schrijdinger equation for a more quantitative 
prediction of the 2D effects. 

y distance [nm] 

Fig. 7. The electron concentration at the mid-channel of 
the 10 nm quasi-WTM, as computed by the 1D (solid 
line) and 2D (dashed line) Schrodinger solvers. 

Supported by this validation, we observe that 1D and 2D 
methods predict different results inside the channel. Fig. 7, 
in fact, shows that, besides different 1D and 2D concentra- 
tion values, a different position of the concentration cen- 
troids can also be observed. 
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Fig. 8. Derivative of the electron concentrations the of 
Fig.7. For the sake of comparison, the derivatives 
have been normalized to unity to put in evidence the 
relative shift of the concentration peak. 

This is clearly seen in Fig. 8, where the derivatives of the 
1D and 2D electron concentrations of Fig. 7, normalized 
to unity for sake of comparison, are shown. A peak shift 
of ~ 0 . 1 5  nm can be extracted, certainly affecting the CV 
characteristics of these devices with tox = 1.5 nm. 

IV. CONCLUSIONS 

In conclusion, this paper has shown that differences be- 
tween 1D or quasi-2D and fully-2D QM models can be 
expected when simulating ultra-short WTMs. Effects that 
cannot be captured by ID or quasi-2D QM models have 
been shown. The relevance of the issue will deserve the in- 
clusion of self-consistency in the proposed 2D QM frame. 
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