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Abstract-A solid-state implementation of a set of one- and 
two-qbit gates for quantum computing is proposed. The qbit 
is defined as the state of an electron running along two quan- 
tum wires, suitably coupled through a potential barrier with 
variable height and/or width. Single-qbit gates are imple- 
mented using the coupling between the two wires. The two- 
qbit gates have been designed using a Coulomb coupler to in- 
duce a mutual phase modulation of the two qbits. A num- 
ber of runs have been performed using a time-dependent 2D 
Schrodinger solver. 

I. INTRODUCTION 

Over the last decade, considerable interest has developed in the 
application of quantum theory to few-particle systems. Moreover, 
i t  is now possible to fabricate very sophisticated semiconductor 
devices in which quantum effects play a dominant role. Even if 
the nanodevices behave accordingly to quantum mechanics, the 
algorithms that they run are classical. But quantum mechanics 
might be used also in a new kind of algorithms, more powerful 
than the classical computation: to this purpose a fundamental re- 
search, called quantum computation, has recently been developed 
[]I .  

From a physical point of view, a bit is a physical system which 
can be prepared in one of two different states, 0 or 1. The quan- 
tum bits, qbits, are two-state quantum systems and represent the 
elementary unit of quantum information: the qbit can be prepared 
in a coherent superposition of the two classical input states. In 
some sense, the quantum logic gate can process the input states in 
parallel due to the superposition. 

The choice of the individual quantum system,is crucial: since 
many qbits are necessary to realize a quantum computer, the phys- 
ical system must be reliable and easily reproducible with high 
quality standards. In this work, a proposal for semiconductor qbit- 
s is presented, based on the coherent propagation of electrons in 
quantum wires. The fabrication of the proposed devices is within 
the reach of today’s advanced technological processes. The main 
difficulty is the onset of interactions between the system and the 
environment, which produce decoherence and consequent loss of 
information. 

11. THE QUANTUM SYSTEM 

Two identical semiconductor quantum wires separated by a 
high potential barrier constitute the device for the two-state quan- 
tum system. The qbit states 10) and 11) represent the localization 
of the electron in one of the two wires. They are linear combina- 
tions of the even and odd states (+e and $o) corresponding to the 
lowest energy levels of the quantized direction, i.e., the transver- 

sal one: 
1 

10) = -(I&) Jz + , 

(1) 

The electron is assumed to coherently propagate along the longi- 
tudinal direction. By introducing a coupling window with lower 
potential barrier between the wires, the wave function begins to 
oscillate between them with a period T = h/(eo - e e ) ,  where 
eo and are the energies of ?,bo and +e ,  respectively [2]. In our 
case, the bamer height andor width between the wells changes 
along the wires: the heterostructure can be designed in such a 
way as to produce the desired transfer process of the wave func- 
tion while the electron crosses the coupling regions. In this way, 
a set of single-qbit logic gates has been designed, that is formally 
described by the following evolution matrix [3]: 

cos(B/2) i sin(e/2) 
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The length Lw of the coupling potential window is chosen in 
such a way as to obtain the desired value for 8. As a first example 
of one-qbit gate, in Fig. 1 a quantum NOT gate is shown, real- 
ized by means of two “beam splitters”: the single gate S ( x / 2 )  is 
applied at 150 nm and at 700 nm with a 14nm-long coupling win- 
dow, performing the computation S ( ~ / 2 ) S ( x / 2 )  = S(T) that is 
a NOT evolution. 

Another useful one-qbit gate is given by the following transfor- 
mation: 

i L  
e 2  0 

(3) 

Any R(4) can be realized by introducing a suitable potential bar- 
rier in one of the wires: the wave packet experiences a delay that 
shifts the phase between the two states 10) and 11). In order to 
test such an evolution, the IDENTITY gate has been realized by 
S(r/2)R(n)S(r/2), as shown in Fig. 2: the light grey bam- 
er experienced by the wave packet along the left wire gives the 
phase shift 4 = r. As shown in [4], the matrices (2) and (3) are 
fundamental to construct any universal rotation U(6, a ,  p, e) ,  i. 
e. 

, i ( p + g )  cos(g) S. 

R(4)= ( e-if ) . 

) . (4) ( -  e+q+g) sin(;) e- i (q+g) cos(;) 

1 4 s )  
U = ea6 

In fact, by neglecting the global phase-shift factor 6, the universal 
transformation U can be decomposed in three transformations: 

‘U(a,p,O) = R(a - n/2)S(e)R(p  + r / 2 ) .  ( 5 )  
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Fig. 1 .  Electron density at different times in the proposed device: 
two coupling windows between the wires are applied, which 
realize the “beam splittef’gate. A quantum NOTis obtained. 

Hence, all one-qbit logic gates can be realized by means of a 
suitable decomposition in terms of S and R transformations. 

I I I .  TWO-QBIT GATES 

In the previous section a set of gates has been described, which 
consists of all one-qbit rotations. The next step was to design 
a two-qbit gate. In particular, the attention has been focused on 
Control-U gates. The latter have two inputs and outputs; bit one 
is the control and bit two is the target. The Control-U evolution 
applies the unitary matrix U to the target if and only if the control 
is 11). As shown in [4] and [5], almost any Control-U gate is u- 
niversal, with the meaning that any logic gate can be decomposed 
into a sequence of the Control-U gate and any arbitrary single-qbit 
rotation. In particular, the Control-NOT (C-NOT) is universal and 
gives the simplest example of a two-qbit gate. 

In this work, the design of a Control-U gate starts from the 
purpose of using the Coulomb interaction to establish a quantum- 
mechanical correlation between the two qbits. The gate has been 
implemented as shown in figure 3, where CC is a Coulomb cou- 
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Fig. 2. Electron density at different times in the proposed device: 
two “beam splitter” gates are applied with a delaying poten- 
tial between them in one of the wires (light grey region). A 
quantum IDENTITY is obtained. 

pler of length Lc ,  able to induce a mutual phase modulation on 
the two qbits [6]. As the Coulomb interaction is strongly depen- 
dent on the distance between the charges, the interaction acts only 
on the evolution of the wave functions along the closer wires. As 
a consequence, the action of the gate corresponds to the following 
matrix: 

/ l o o  0 )  w =  [ 0 1 0  J 
0 0 0 €9 

where 4 is a function of the coupling interaction and of the prop- 
agation time. Hence, the length of the gate, Lc, implements the 
desired value of 4. By using both (2) and (6),  the C-NOT can 
easily be realized as shown in figure 4, where the network that 
simulates the C-NOT gate is reported. It is worth noting that even 
if the control qbit is not directly affected by any state evolution, 
whereas the target qbit experiences the unitary evolutions in the 
succession reported in the figure, the resulting final state is an “en- 
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tanglement" of the single-particle states, and, as a consequence, 
the information is contained in the system of the two qbits. In 
order to show the mutual phase modulation of (6), a suitable net- 
work of logic gates has been realized and tested. In particular, the 
following transformation has been analyzed: 

which represents the application of a beam splitter to the target 
qbit, followed by a Coulomb coupler applied to both qbits, and 
again a beam splitter applied to the target: the electron density 
along the wires depends on the initial state of the control qbit, as 
shown in Figs. 5 and 6. Actually, the target qbit has been taken 
as (0) at t = 0 ,  then the splitting S(0 = x/2) has been applied 
before and after the T(4 = x/2) gate. If the control qbit is IO), 
the evolution applied to the target is S(x/2)S(x/2) = S(n), that 
is a NOT gate (Fig. 5). If the control qbit is [ I ) ,  the mutual 

,phase modulation of T(7r/2) alters the final electron density of 
the target giving a split wave function (Fig. 6). 
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Fig. 3. Architecture for the T(4) gate based on the Coulomb 
coupler CC: the phase q5 is proportional to the coupler length 
LC. 

Iv .  NUMERICAL RESULTS 

The proposed system has been simulated, using a time- 
dependent 2D Schrodinger solver. The solver has been imple- 
mented in the frame of a Crank-Nicholson method [7] by mean- 
s of a simple finite-difference approximation. A uniform two- 
dimensional grid has been used for the discretization, with inter- 
vals of 0.25 nm along the z direction and 1 nm in the y direc- 
tion. The iterative time evolution has been performed with steps 
of 1.6 fs. The electron-electron interaction is taken into accoun- 
t by means of a self-consistent Coulomb potential generated by 
each electron: the interaction potential is calculated at each time 
step and added to the structure potential. The evolution matrix 
is solved by means of the Conjugate Gradient Stabilized ( C G S )  
method. 

The wires have been realized as GaAs/AlGaAs heterostruc- 
tures. The lateral extension of the wires is 6 nm. The high-level 
potential (dark regions in the figures) is assumed to be infinite. 
The initial condition along the z axis has been taken as the ground 
state of an infinite square well with the same lateral extension of 
the single wire. Along the y direction a minimum uncertainty 

control 

1 
Fig. 4. A network consisting of two T(4) gates and two S(0) 

gates can simulate the C-NOT. 

wave packet has been assumed: 

In Figs. 1 and 2, it is assumed that at t = 0 the electron is confined 
in the left wire with a wave function given by (8) with c = 10 nm 
and a kinetic energy of 0.1 eV. The wave packet is localized at the 
center of the wire with coordinates 20 = 9 nm and yo = 100 nm. 
The total energy must not exceed the energy of the first excited 
transversal state in the wire in order to ensure that only the ground 
state is occupied. 

As far as the design of the one-qbit gates is concerned, the cou- 
pling potential window used to realize the S(7~/2) operation has 
been designed with LW = 14 nm and a barrier height of 0.1 eV 
(Figs. 1 and 2),  whereas the delay corresponding to R(7r) has 
been designed with a potential barrier 110 nm long and 10 meV 
high (Fig. 2) .  Very good results have been obtained for the one- 
qbit gates, while the broadening of the wave functions shown in 
the two-qbit gate in Figs. 5 and 6 can become a critical problem 
in longer gates. In particular, the T(7r/2) gate has been realized 
with a Coulomb coupler 180 nm long, and by drawing the two 
wires to a distance of 2 nm. The result reported in Fig. 6 has 
been checked by means of an integration of the electron densities 
located in the wires at the final time (t  = 1120 fs). 

The search of optimal parameters for the geometry of the sys- 
tem and for the appropriate initial energy of the injected electrons 
is being performed to realize the T(x) gate. 

V. CONCLUSIONS 

A solid-state implementation of new quantum devices for 
quantum-computing purposes has been presented, based on the 
coherent electron transport in quantum wires. By adopting a 2D 
time-dependent Schrodinger solver, a number of runs have been 
performed to design quantum logic gates. The results obtained so 
far demonstrate the feasibility of a number of logic quantum gates 
within the proposed technology. In particular, the evolution of one 
and two wave packets along coupled wires has been shown. Fol- 
lowing [4], a set of elementary gates has been addressed, which is 
shown to be universal. 
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Fig. 5. Electron density at different times in the device corre- 

sponding to Eq. (7). As the control qbit is IO), the Coulomb 
interaction between the electrons is not effective due to the 
large distance. The initial state 100) evolves to the final state 
I O l ) ,  due to the action of the two beam splitters applied to the 
target qbit. 
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