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Abstract 

A time-domain shooting method based coupled 
device and circuit simulator suitable for accurate simulation 
of RF circuits is presented. The simulator supports accurate 
numerical models for diodes, BJTs, and MOSFETs. These 
combined with the accelerated steady-state method allow 
accurate and efficient steady-state simulation of RF circuits. 

1. Introduction 
With the continued increasing demand for RF ICs 

there is a critical need for accurate and efficient simulation 
of circuits in the periodic steady state. Certain aspects of 
system performance are easier to characterize and verify in 
steady state. Examples of these are distortion, power, 
frequency, noise, and transfer characteristics such as gain 
and impedance. 

Although several techniques have been developed 
for accelerated steady-state solution [ 1-61 not much 
attention has been given to the model accuracy. For RF 
applications distributed device effects are important and 
must be included in compact models [7]. In the absence of 
accurate compact models a coupled circuit and device 
simulator can be used whereby critical devices are solved 
using physical (numerical) models. Such an approach has 
been applied for the simulation of RF power amplifiers [8] 
using a harmonic-balance method. However, no coupled 
device and circuit simulator supports the time-domain 
steady-state method which is useful for several circuits [9]. 
This paper presents the first implementation of the time- 
domain steady-state method in the context of coupled 
device and circuit simulation. 

The paper is organized as follows. An overview of 
the time-domain shooting method and the coupled device 
and circuit simulator CODECS [7] is provided in Section 2. 
Implementation details and heuristics are described in 
Section 3 while application examples and runtime 
performance are presented in Section 4. Conclusions and 
future work are summarized in Section 5. 

2. Overview 
2.1  Time-Domain Steady-State Analysis Method 

There are a variety of methods that directly 
compute the steady-state solution more efficiently than 
numerically integrating the differential equations of a 
circuit from an arbitrary initial condition. These methods 

can be classified as frequency-domain and time-domain 
methods [ 11. Harmonic balance is a frequency-domain 
method in which the coefficients for a truncated Fourier 
series expansion of the steady-state solution are determined. 
In the time domain, the shooting method is a popular 
method to find an initial condition which leads to the 
steady-state solution. Our focus is on the time-domain 
method using Newton's algorithm. 

Consider the system of equations 
f(X,X,t) = 0 (1) 

where X and f are n vectors; f is periodic in t with period T. 
We assume that Eq. (1) has a periodic solution of period T. 
The solution of Eq. (1) can be obtained by numerical 
integration. The objective of the time-domain method is to 
determine the initial condition X ( 0 )  such that the solution of 
Eq. ( l) ,  with an initial condition X(O), over the interval LO, 
TI results in a final state X(T)=X(O). X(T) is a function of 
X(0) and is denoted as X(T, X(0)). This is a two-point 
boundary value problem in which the solution to Eq. (1) in 
the interval [0, T] must satisfy the boundary condition: 

To solve this problem using Newton's algorithm, the, 
following iteration equation is used [2]: 

X (0) - X ( T ,  X (0)) = 0 (2) 

X '+I (0) = X ' (0) - [ I  - J ' ] - I  [ X ' (0) - X ' ( T ) ]  (3) 
. aX'(T, X(0)) where J '  = ax (0) 

(4) 

is the sensitivity matrix of the final state X'(T) 
corresponding to period i with respect to the initial 
condition X'(0) for period i, I is the identity matrix, and 
X"'(0) is the initial guess for period i + l .  For an 
autonomous system, the period T is added as an unknown 
and one of system variables is fixed. 

The sensitivity matrix J in Eq. (4) can be readily 
determined by use of forwardhackward substitutions. 
When a transient analysis has been carried out for the 
period i ,  Xi(T) and J', which are required for the Newton 
iteration, are computed simultaneously and both are 
available at the end of the period. The initial value of J' is 
the identity matrix. 

2.2 Coupled Device and Circuit Simulator (CODECS) [7/ 
CODECS is a coupled device and circuit simulator 

that .allows accurate and detailed simulation of 
semiconductor circuits. The simulation environment of 

0-7803-6279-9/00/$10.00 0 2000 IEEE 

90 



CODECS enables one to model critical devices within a 
circuit by physical (numerical) models based upon the 
solution of Poisson’s equation and the current-continuity 
equations. Analytical models can be used for the noncritical 
devices. CODECS incorporates SPICE3 for the circuit- 
simulation capability and for analytical models of 
semiconductor devices. 

Numerical models include one- and two- 
dimensional models for diodes and bipolar transistors, and 
a two-dimensional model for MOSFETs. The numerical 
models in CODECS include physical effects such as 
bandgap narrowing, Shockley-Hall-Read and Auger 
recombinations, concentration- and field-dependent 
mobility, concentration-dependent lifetimes, and avalanche 
generation. 

CODECS supports dc, transient, small-signal ac, 
and polelzero analysis of circuits containing one- and two- 
dimensional numerical models. However, periodic steady- 
state analysis is not available in CODECS. In this work we 
extend the capabilities of CODECS by implementing the 
time-domain periodic steady-state method. 

3. Implementation Considerations 

convergence heuristics are described. 
In this section, the implementation details and 

3.1 State Elimination 
Experiments have shown [5] that states due to 

diode and transistor parasitics need not be considered 
because they have only a second order effect on the 
periodic response. Elimination of these states makes 
convergence of Newton’s algorithm faster and reduces the 
computational effort. Therefore, only the states for the 
capacitors and inductors in the circuit are considered. 

3.2 Numerical Device Biasing 
In CODECS, the numerical devices are biased up 

to an initial condition by stepping from the equilibrium 
state. This stepping is necessary for obtaining a converged 
solution for large bias steps. To help convergence when 
biasing the numerical devices for a new initial guess, we 
make use of the final state of the last period. At the end of 
the period i ,  we obtain the final state Xi(T) and the initial 
guess X”’(0). Usually the difference AXi = Xi+’(0)-Xi(T) is 
small. To bias numerical devices to Xi+’(0), we only need to 
bias them by a small step AX‘ since at that time the 
numerical devices have already been biased to Xi(T) by the 
transient simulation for period i. 

3.3 Heuristics for  Autonomous Systems 
An example of an autonomous system is an 

oscillator. The oscillator is a strongly nonlinear system for 
which the period of oscillation is an unknown. Heuristics 
are necessary to ensure reliable convergence of Newton’s 

algorithm for such a system. In our implementation the 
following heuristics are used. 

A transient analysis is performed in the beginning 
for three periods without sensitivity computation such that 
the extremely fast transients in the start-up phase-have died 
out. Also in this interval a pulse is applied to a voltage 
source to build up the oscillation. The sensitivity 
computation is carried out for the current period to 
calculate the new initial guess only when the error of the 
last period is less than an acceptable threshold. Otherwise, 
the transient analysis continues to the next period. This 
heuristic reduces the probability of the iteration process 
going astray or leading to a wrong solution. To prevent 
overshoot, a damped Newton iteration is used. Damping 
reduces the effect of the sensitivity matrix J on the iteration. 
Finally, the change in the period is not allowed to exceed 
ten percent of the current period to prevent overshoot of the 
Newton iteration. 

4. Examples and Results 
Several example circuits with a periodic steady 

state have been chosen to verify our implementation. The 
semiconductor devices in these circuits are modeled by 
either 1D or 2D numerical models. 

4.1 Examples 
The steady-state solution for the frequency 

multiplier circuit of Fig. B.5 of [lo] is obtai~ed after 6 
periods of transient analysis using Newton’s algorithm. 
While, the conventional transient simulation takes 1500 
periods to reach the steady state. Newton’s algorithm 
speeds up the convergence of the steady-state simulation 
significantly. The output voltage waveforms for several 
periods are plotted in Fig. 1. The Newton iteration is 
carried out at the end of each period to calculate the initial 
guesses for the next period. 

2nd period 

4th period 
0.6 - 6th period 

I , ‘ /  I 
0 0.05 0.1 0.15 0.2 

Time (us) 
Fig. 1: Output voltage waveforms for four periods during 
the steady-state simulation of the frequency multiplier 
circuit. 
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The steady-state solution for the DC power supply 
circuit of Fig. B.l of [ lo]  is obtained after 6 periods of 
transient analysis using Newton's algorithm. The 
normalized harmonics of the steady-state voltage waveform 
at node 2 are plotted in Fig. 2. From this figure, the 
magnitude of the harmonics drops slowly. If the harmonic 
balance method is used to determine the steady state of this 
circuit, many harmonics have to be computed to obtain an 
accurate result. With the time-domain shooting method this 
circuit can be readily simulated. The time-domain shooting 
method is robust for accurate steady-state simulation of 
strongly nonlinear circuits [9]. 
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Fig. 2: Normalized harmonics of the steady-state voltage 
waveform at node 2 for the DC power supply circuit. 
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As an autonomous system, a typical BJT Colpitts 
oscillator is chosen from [ 111. The steady-state solution of 
this circuit is obtained with 18 periods of transient 
simulation using the Newton shooting algorithm. Among 
them, sensitivity computation is carried out in 13 periods 
and Newton iteration as in Eq. (3) is performed 10 times. 
At the end of the 6th and 12th periods, the sensitivity 
matrix J has been calculated but the Newton iteration is not 
performed. This is because the error is larger than the 
acceptable threshold as discussed in the heuristics of the 
last section. The steady-state solution is verified with a 
regular transient simulation. 

To demonstrate the effect of the numerical model 
on the steady-state solution, a high frequency Colpitts 
oscillator (Fig. B.8 of [lo]) is used. The steady-state 
solutions of this circuit with analytical and numerical 
models are obtained by the time-domain steady-state 
method. The oscillation frequency is 0.8GHz for the 
analytical model and 0.72GHz for the numerical model. 
The normalized harmonics of the output waveforms for 
both models are shown in Fig. 3. The total harmonic 
distortions are 7.7% and 13.4% for the analytical and 
numerical models, respectively. The same simulation has 
been performed for the Colpitts oscillator from [ 111. The 
oscillation frequency is 60.9 MHz for the analytical model 

- 

- 

. 

and 61.6MHz for the numerical model. The normalized 
harmonics of the output waveforms are shown in Fig. 4. 
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Fig. 3: Normalized harmonics of the steady-state solution 
for the high frequency Colpitts oscillator comparing 
analytical and numerical models. 
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Fig. 4: Normalized harmonics of the steady-state solution 
fo; the BJT Colpitts oscillator from [ i l l  
analytical and numerical models. 
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Fig. 5: Phase shift due to a current impulse at node 5 for 
phase noise analysis of the high frequency oscillator 
comparing analytical and numerical models. 
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The total harmonic distortions are 1.6% and 0.8% for the 
analytical and numerical models, respectively. The 
differences in oscillation frequencies and harmonic 
distortion are much larger for the high frequency oscillator 
than the low frequency oscillator. 

Finally, for phase noise analysis of the high 
frequency oscillator [ 101, the impulse sensitivity functions 
(ISF) [ 111 at node 5 are simulated with both the analytical 
and numerical models. The phase shift is plotted in Fig. 5 
and it can be seen that the difference between the two 
models is significant. These results show that numerical 
models are essential for accurate simulation of high 
frequency RF circuits. 

Example 
Conventional Time-domain 

transient steady-state 
circuits 

DC supply* 

simulation method 

80 6 
(# of periods) (# of periods) 

CB amplifier* I 30 4 
EC xfrmrosc* I 185 

In transient simulation of circuits containing 
numerical devices, the computationally intensive part is the 
numerical model evaluation. The overhead due to the 
sensitivity computation required by the time-domain steady- 
state method is negligible, especially when the state 
elimination in Section 3.1 is implemented. Therefore, the 
ratio of the number of periods required is approximately 
equal to the ratio of the simulation time required. The time- 
domain steady-state method is much more efficient with 
high-Q and lightly damped circuits. Furthermore, it will 
result in a significant reduction of simulation time when 
fine meshed numerical devices are used in circuits. 

25 

5. Conclusions 
The first implementation of the time-domain 

steady-state method in the context of coupled device and 
circuit simulation is presented. With the implementation 
heuristics that were described, the time-domain shooting 
method is reliable and converges rapidly to the steady state. 
Compared with the results of a conventional transient 
simulation and an analytical model, this simulator is 
efficient and more accurate. 

Future work will focus on improved heuristics for 
autonomous systems to improve the efficiency and 
reliability of steady-state simulation for oscillators. 

Freq multiplier* I 1500 
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