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Abstract 

Integral equation methods have become popular for electromag- 
netic analysis problems such as computation of interconnect para- 
sitics. However, developing integral equation codes that can treat 
diverse physics and interface with solvers in other domains requires 
algorithms that can easily be adapted to a variety of geometrical de- 
scriptions, solver interfaces, and integral equation formulations. In 
this paper we survey some of the most popular fast integral equa- 
tion solution techniques with mind to their flexibility in dealing 
with diverse problem domains. 

I. Introduction 

Detailed analysis of electromagnetic phenomena in modem inte- 
grated circuit processes is difficult for three reasons : large scale 
of the problems to be analyzed, complexity of geometries encoun- 
tered, and the diversity of physics that must be simultaneously an- 
alyzed. 

Modern digital chip designs with millions of gates require 
accurate extraction of tens of millions of parasitic resistances, 
capacitances, and, soon, inductances. Each parasitic element 
represents the electrical behavior of a complex three-dimensional 
object. A typical approach to parasitic extraction is to characterize 
the electrical behavior of a typical set of objects and store the 
information for each object in a database. Parasitic extraction of 
the entire chip is performed by, for each parasitic element, trying 
to find a similar object, or pattern, in the database and using these 
pre-existing patterns to estimate the parasitics. Many such pattems 
must be thoroughly characterized to create the database, and this 
requires efficient and accurate electromagnetic analysis codes. 
More accurate analyses can be obtained by directly subjecting 
relevant portions of layout to an analysis using a high-capacity 
field-solver[ 1, 21. This approach is particularly well suited to 
analysis of critical nets in a design, where accurate estimation of 
performance is essential. 

A wide variety of numerical schemes are available for such 
electromagnetic analysis problems, but in the last decade, integral 
equation methods have attracted particular interest. The advantage 
of integral equation methods is that they can efficiently handle com- 
plex three-dimensional geometries with a minimal number of dis- 
cretization elements, because only the most essential portions of the 
problem domain need be discretized. For example, for capacitance 

calculations, only the charge-bearing conductor surfaces must be 
discretized, while for inductance, only the current-carrying interior 
conductor volume must be represented. The disadvantage of inte- 
gral equation schemes, compared with altematives such as finite- 
difference or finite-element methods, is that they generate large 
systems of linear equations with dense matrices. The dense matrix 
representing a system of n simultaneous linear equations in gen- 
eral requires O(n2) storage, and traditional Gaussian-elimination 
based solution algorithms require O(n3)  operations. When n is 
greater than a few thousand, explicit manipulation of these dense 
matrices becomes impractical. Much effort has been put into de- 
vising algorithms that can perform operations with the dense ma- 
trices arising in integral-equation methods in an efficient, implicit 
manner[3,4,5]. The typical approach is to concentrate on acceler- 
ating solution of the linear equations generated by discretization of 
integral equations. 

11. Fast Integral Equation Solvers 

To obtain a concrete example, consider the model problem of ca- 
pacitance extraction. The capacitance of an m-conductor geometry 
is given by a (symmetric) matrix C 6 Rmxm that maps a set of m 
vectors of conductor voltages V to conductor charges Q as Q = CV.  
That is, Vk[ represents the potential of the kth conductor, for the Ith 
test vector, Qkl is the charge on conductor k generated by the Ith 
voltage vector, and the entry Ckl represents capacitive coupling be- 
tween conductors I and k. To extract capacitances, the charges Qkl 
must be determined given the voltages V .  Formally this means it is 
necessary to solve Laplace’s equation for a sequence of m Dirichlet 
boundary conditions on the conductor surfaces. If the conductors 
are embedded in an infinite homogeneous dielectric, such as free 
space, a first-kind integral equation may be written[6, 7, 81 for the 
charge density (J which lies on the conductor surfaces, 

where ~ ( x )  is the known conductor surface potential, da’ is the 
differential conductor surface area, x ,  x’ E R3, E is the dielectric 
constant, and 11x11 is the Euclidean length of n. 

A standard approach[9] to numerically solving (1) for the 
charge density (J is to use a piece-wise constant collocation scheme. 
In this approach the conductor surfaces are approximated by a set 
of n polygons, or “panels”, and it is assumed that on each panel 
i ,  a charge, qi, is uniformly distributed, as in Figure 1. For each 
panel, an equation is written whichfelates the known potential at 
the center of that i-th panel, denoted fi and given at the Ith potential 
solution by Ti = Vkl if panel i is on conductor k ,  to the sum of the 
contributions to that potential from the n charge distributions on all 
n panels. The result is the dense linear system, 

P q = T  
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Figure 1 : Piecewise-constant collocation discretization of t 
conductors. Conductor surfaces are discretized into panels wh 
support a constant charge density. 

where P E R”’“, q E R“ is the vector of panel charges, 7 E R’ 
the vector of known panel potentials, and 

(3) 

where the collocation point xi is the center of the i-th panel and a, 
is the area of the j-th panel. 

The typical approach to the problem is to solve 2 by an Krylov- 
subspace based iterative method such as GMRES[10]. To solve a 
linear system, GMRES requires only matrix vector products, that 
is, the operation of computing Pv given an arbitrary vector v. Nom- 
inally, because each source point contributes to each evaluation 
point in the integral, this is an operation with O(n2) complexity. 
To a large extent, research in integral equations methods over the 
past ten years has focused on accelerating the operation Pv relative 
to naive pairwise evaluation of the interactions. Many algorithms 
have been proposed for this acceleration step, such as fast multipole 
methods[ll, 31, grid-based methods[l2, 41, SVD approaches[5], 
and wavelet-like algorithms[l3, 14, 151. 

An emerging issue for the integral equation solvers is that they 
must be able to handle diverse physics. For example, in large-scale 
mixed-signal and - particularly - integrated RF circuits (RFICs), 
a variety of electromagnetic analyses must be performed to ade- 
quately characterize parasitics. Interconnect capacitances and re- 
sistances are extracted using an electroquasistatic paradigm, as pre- 
viously discussed. Substrate parasitics are physically similar, but 
require substantially different extraction procedures to be analyzed 
efficiently[ 161. Packaging may critical for performance, and may 
be analyzed with electromagnetoquasistatic [ 171 or full-wave [18] 
methods. Integrated chip passive components such as spiral induc- 
tors also require very accurate characterization, possibly full-wave 
analysis. Each of these problems possess different geometrical rep- 
resentations and possibly distinct physics. An even more chal- 
lenging scenario is presented by microelectricalmechanical sys- 
tems (MEMS). Here, the electromagnetic solvers must integrate 
with computations in a broad array of different physical domains, 
such as mechanical and thermal analysis. In addition, the integral- 
equation equation techniques developed for electromagnetics are 
being adapted for use on other problems, such as microfluidics [ 191. 

Figure 2: Portion of hierarchical binary-tree spatial decomposition 
for FMM-class algorithms showing multipole approximation re- 
gions as seen by a single evaluation point. Note spatial refinement 
near evaluation point, and empty areas where no charge sources are 
present. There are 157 individual cells in this example. 

Problem diversity manifests itself in two ways in the integral- 
equation based codes. First, the physics of the problem being 
analyzed by the core integral equation solver itself may vary. 
This typically manifests itself as a change in the integral equation 
formulation and/or a change in the kernel of the integral equation. 
As a result there have been many research efforts designed to 
produce algorithms that are adaptable to a variety of kernels. 
We survey some of the most popular acceleration techniques in 
Sections 111.-V.. In Section VI., we will summarize the methods 
and discuss some possibilities to dealing with the proliferation of 
application domains, interfaces, and integral equation formulations.. 

111. Fast Multipole Methods 

The first fast integral equation solvers[3] were developed for the 
Laplace problems, as represented by the 1 / r  kemel in ( I ) ,  and 
based on fast-multipole methods[20]. Fast multipole methods 
(FMMs) have been extended to a wide variety of problems[21], 
some of them, such as polynomial interpolation, seemingly unre- 
lated to the l / r  type kernels that arise in the Laplace problems. 
They all share some common characteristics, however, and have 
motivated many of the alternative approaches discussed in Sections 
IV. and V.. We will include the “tree codes” [22] as members of the 
fast-multipole class, since as explained below, for our purposes the 
determining feature of this class of algorithm is the dependence on 
certain theorems from classical physics. 

Fast multipole methods for computation of “potentials” are 
based on three key ideas. First, there is a notion of the separation of 
the “near” and “far” field for a given kernel. For a given evaluation 
point x in (l), the near-field contribution consists of all portions of 
the integral derived from sources CT at a position x’ with separation 
IIx -211 less than some value R. The far-field is due to all other, 
sources. In a direct evaluation of the integral, it is the far-field 
terms that represent the majority of the evaluation cost. Efficient 
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calculation of the far-field contributions is necessary to reduce the 
overall computational complexity. 

The second key idea is the introduction of a hierarchical spa- 
tial decomposition. Figure 2 shows a spatial decomposition as seen 
from the perspective of a single potential evaluation point. Each 
rectangular cell represents a region within which far-field contribu- 
tions to this evaluation point are collected together in order to re- 
duce the computational cost. Because the representations of the far- 
field in each supercell can be used for many evaluation points, the 
cost of the algorithm is proportional to the number of cells needed 
for a single evaluation multiplied by the number of evaluations. If 
the number of cells in a typical spatial decomposition is much less 
than the number of original source points in the integral, the op- 
eration count for the potential computation can be reduced. Other 
techniques to further reduce the operation count, such as amortizing 
the cost of the far-field interaction computations over many evalua- 
tion points by use of local expansion representations[l 13, are avail- 
able. Since the number of cells in such a spatial hierarchy grows 
only linearly with the number of source points, the net result is a 
reduction of complexity from O(n2) to O(n) or O(n1ogn) depend- 
ing on the details of the algorithm, spatial hierarchy, and type of 
far-field representation. 

The third feature of fast multipole algorithms has to do with 
the details of the far-field representations. The original algorithms 
made use of addition theorems to separate the potential computa- 
tion into a part that is due to source terms only, and a part due to 
evaluation points only. For example, the l / r  kernel can be written 
as a series expansion 

where (rle,$) and are the spherical coordinates of the 
points x and A! respectively. In each cell, multipole expansions 
of the charges can be performed by calculating the multipole 
moments, mm = J”o(x’)lmlm = J”o(x’)r‘Y{m(e’,$’) and so forth. 
These coefficients represent an expansion of the potential due to 
sources in a cell in terms of ( l / r ) ,  where r is the distance to 
the expansion point, usually the cell center, and the spherical 
harmonics YI,. In practice, what is done is to perform multipole 
representations of the leaf cells in the tree, then calculate multipole 
representations of the higher order cells by shifting the origin of 
the multipole representation in the child cells to the origin of the 
parent cells. This procedure is applied recursively up the tree 
hierarchy until the top level is reached, at which time a multipole 
representation of the sources in each cell, at every hierarchy level, 
will have been computed. To evaluate the potential in a given cell, 
the multipole expansions can be converted into local expansions, 
that is, expansions of the potential outside an evaluation cell in 
terms of powers of r’ and spherical harmonics Y I ~ .  (We can 
consider the special case of potential evaluation as evaluation of an 
order-zero local expansion.) These local expansions can likewise 
be passed down the spatial hierarchy to lower levels. Accuracy can 
be insured in the overall algorithm by requiring that evaluation of 
multipole expansions only occurs for cells that are well-separated, 
that is, for small (#/r). Then if the series is truncated at small 
1 ,  m, necessary for computational efficiency, the error induced by 
series truncation can be bounded at a small constant. Various 
modification of this approach are needed, particular for kemels 
with oscillatory parts such as eikr/r, but the essential features 
remain intact. To summarize, those features are 

1. Construction of a spatial hierarchy. 

2. Construction of multipole-to-multipole (M2M), multipole- 
to-local (M2L), and local-to-local (L2L) operators. 

3. Hierarchical application of the M2M, M2L, and L2L opera- 
tors for given distributions of source and evaluation points. 
For source/evaluation points that are very close, usually in- 
teractions within the same cell or between points in cells that 
are contiguous, the interactions reduce to evaluations of the 
original integral (1). 

The difficulty with this approach occurs when one is interested 
in more than one kernel. Construction of the M2M, M2L, and 
L2L operators requires detailed analytical knowledge of the kernel 
under study. This makes development of FMM algorithms for 
kemels representing new physics a laborious process. Often, no 
closed-form representation of the kernel is available at all. This 
situation has led to a search for algorithms that can be quickly 
adapted to a wide variety of kernels. No truly general purpose 
algorithm exists, but many algorithms can be devised that are 
applicable to kemels in a class defined by a suitable, sufficiently 
general, restricting assumption. 

IV. Grid Based Methods 

An altemative to fast multipole methods are methods which use 
a grid, instead of multipole expansions, to represent the far-field. 
These methods exploit the fact that potentials at evaluation points 
distant from a cell can be accurately computed by representing 
the given cell’s charge distribution using a small number of (fic- 
titious) weighted point charges. Constructing such a representa- 
tion is equivalent to interpolating potentials, evaluated on the grid, 
to the actual potential evaluation points (for example, on the dis- 
cretized panels). Thus any interpolation scheme (e.g., polynomial 
interpolation) can be used for the representation step, and vice 
versa. By applying this idea in a hierarchical manner, O(n)  or 
O(n1ogn) multigrid algorithms for the potential computation P v 
can be constructed[l2]. If the point charges all lie on a uniform 
grid, then the critical step in the algorithm, the evaluation of the 
grid potentials due to the grid charges, analogous to the M2L op- 
erations of the FMM algorithms, can be simplified. Since the po- 
tential at the grid points due to the grid charges is a discrete con- 
volution, the computation can be performed using the FFT. Since 
only the far-field computations are represented on the grid, an addi- 
tional correction step is needed for the near-field interactions. We 
summarize the precorrected-FFT[4] method for approximating P v, 
illustrated in Figure 3 where we have notated steps that are con- 
ceptually similar to the FMM operations of M2M, M2L, and L2L, 
as 

1. 

2. 

3. 

4. 

project the panel charges onto a uniform grid of point 
charges, (M2M) 

compute the grid potentials due to grid charges using an FFT, 
(M2L) 

interpolate the grid potentials onto the panels (L2L), and 

directly compute nearby interactions (M2L). 

This algorithm has several advantages. Given appropriate inter- 
polation operators (and polynomials are always available), integrals 
with any kemel that satisfies certain symmetry properties can be di- 
rectly treated. In particular, it is not necessary to specify the kernel 
in closed form. This is particularly convenient when the kernel it- 
self is only available as the result of a complicated numerical opera- 
tion. To be able to exploit the FFT, the kernel must be representable 

80 



I I I I I 

Figure 3: 2-D Pictorial representation of the four steps of the 
precorrected-m algorithm. Interactions with nearby panels (in 
the grey area) are computed directly, interactions between distant 
panels are computed using the grid. 

in terms of operators that have some sort of easily accessible trans- 
lational invariance. That is, it must be possible to decompose the 
matrix that maps grid charges to grid potentials into a set of K ma- 
trices, where K is possibly problem-dependent but independent of 
n, each of which has low displacement rank with respect to a matrix 
with Toeplitz-like structure. For example, the problem of capaci- 
tance calculation of conductors embedded in a three-layer (two- 
interface) dielectric medium leads to a matrix with a 2 x 2 block 
structure where each block can be expressed as a sum of block ma- 
trices, with blocks that have either Toeplitz or Hankel structure[23]. 
Many problems of interest, particularly in electromagnetic analy- 
sis. possess these sort of translational symmetries. Many of the 
problems that do not are not well suited for solution by integral 
equation methods in any event, because lack of translational sym- 
metry implies that the kemel has a large number of interactions that 
must be calculated in a detailed pairwise manner, and therefore, the 
kemel may be difficult to compute and/or not amenable to accel- 
eration techniques of any sort. In particular, we point out that this 
algorithm is one of the few general-purpose approaches suitable for 
problems with Helmholtz kemels such as eikr/r .  A disadvantage of 
the algorithm is that it suffers from sub-optimal complexity for suf- 
ficiently inhomogeneous geometries. For practical electromagnetic 
problems, O(n4I3) complexity is often the worst observed, even 
for oscillatory kemels[23]. In addition, for problems of moderate 
size. the small constant factors (compared to fast multipole algo- 
rithms) present in the algorithm often offset the higher asymptotic 
complexity. 

V. Wavelet-Like Methods 

The wavelet-like methods are motivated by the same philosophy 
as the FMMs, but they are constructed in such a way as to allow 
more problem-dependent geometrical information to be exploited 
in the computation. The FMMs were able to accelerate the potential 
computation by compressing the representation of many far-field 
interactions into a few multipole coefficients; only the essential 

information in the far-field was retained. The wavelet-like methods 
seek to exploit this same property, but in a less direct manner. 

The wavelet-like methods achieve matrix compression by con- 
structing a multiresolutional basis of functions with vanishing mo- 
ments. The moments of a function are simply the inner products 
of that function with monomial terms of increasing order; they are 
analogous to the multipole expansion coefficients. For example in 
one dimension, the moments mk of a function h(x)  defined on a 
domain S are 

If a function can be represented by an order-q polynomial then its 
inner product with a function known to have its first 9 +  1 moments 
vanishing is guaranteed to be zero, regardless of the other details 
of the function. Thus if $ol$l,.  . . , $ q l ~ l  , y 1 2 ~ .  . . is an orthonormal 
basis on S, if h(x)  is well represented by a 9th order polynomial, 
only the q + 1 $-terms are needed to represent h(x) .  As basis 
functions with vanishing moments have a very small contribution 
in the far field, the wavelet-like basis produces a neat separation 
of near and far-field interactions that allows the dense integral 
operator to be represented efficiently. 

Suppose a spatial hierarchy containing all the charge sources 
and potential evaluation points has been constructed. Consider the 
submatrix P[ijl that represents the interaction between m, sources 
and m, evaluation points in cells i and j .  Suppose an orthonormal 
basis for cell j is given by the m, x m,  matrix V, = [@, Y,] 
with the matrix @, spanning a space of 9 (multidimensional) 
polynomials of order up to Q. Note this implies that the m, - 9 
basis functions comprised by the columns of Y, have 9 vanishing 
moments. Let Oi ly ;  be defined similarly. Then, in this basis, the, 
potential coefficient submatrix becomes 

( 6 )  ~, 

Now, if i and j are well-separated cells, then the interaction be- 
tween them can be accurately descjbed with low-order polynomial 
interpolation, and thus the terms P[12~,p[21~ and q2,1 will vanish to 
within the accuracy of the interpolation. The term pi l ]  will be 
dealt with at higher levels of the spatial hierarchy. T e @ func- 
tions from several child cells will be combined together, and a new 
orthonormal basis constructed with @’ and Y’ functions spanning 
and vanishing over a polynomial basis at the next higher level of 
the hierarchy. This process continues to the highest level of the hi- 
erarchy, where only cells containing basis functions @ remain. In 
this multiresolutional basis, the integral operator will be sparse be- 
cause only nearby cells will have significant interactions. Figure 4 
shows the numerical sparsity pattem typical of an integral operator 
represented in such a multilevel basis. 

Now let us consider finding the multiresolutional basis. Let 
M be a matrix that maps a vector representing a function f into. 
the moments of f. If Mf = 0, then f has vanishing moments, 
or in other words, i f f  has vanishing moments, it must lie in the 
nullspace of M. Thus we can compute the basis at each leaf cell 
by constructing the moment matrix M and taking the singular value 
decomposition M = USVT where U and V both are matrices with 
orthonormal columns. It is more instructive to write this in the form 

(7) 

where 
S = [ S , l O ]  V = [ @  Y ] .  (8) 
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Figure 4: Top: Numerical sparsity pattern of an integral operator 
in a multi-level basis. Bottom: Numerical sparsity pattern of its 
inverse. 

By construction the rightmost mi - q columns of the singular value 
matrix S are 0 and so then the mi - q columns of the submatrix 
Y are the columns of the matrix V corresponding to the basis 
functions with vanishing moments, as only vectors in the space 
spanned by the columns of Y can have non-zero inner product 
with Y.  Similarly the q columns of the submatrix CP give the basis 
functions with non-vanishing moments. 

The basis functions CP will be “pushed up” to the next level in 
order to construct the basis functions at that level. At that level, the 
moments of the parent cell will be needed. These can be obtained 
from the vector of child moments and an M2M type operator. The 
child moments can be obtained in the new basis by re-organizing 
the decomposition above as MV = US; US is clearly an operator 
that maps a function in the new basis to moments. 

The multiresolutional approach is fairly general. Use of the 
polynomial moments to construct the basis allows any operator 
that is asymptotically smooth, i.e., interpolated by a polynomial at 
many length scales, to be efficiently represented. In addition, when 
more efficient interpolation information is available, such as for the 
l / r  kernel, i t  may be exploited to produce an even more compact 
representation. Any suitable approximation basis, in particular 
multipole moments[ 151 and M2M translation operators, can easily 
replace the polynomial moment operators described above without 

substantially altering the computational structure of the algorithm. 
The main drawback of this approach is that it does not appear to be 
suitable for oscillatory kemels such as eikr/r. 

The wavelet-like basis can even be used to construct a sparse 
representation of an operator, and thus accelerate computations, 
when the operator itself is only given in an implicit form. In [ 161, a 
wavelet-like basis was used to accelerate computation of the matrix 
describing parasitic resistive interactions due to substrate coupling. 
In this case, the integral operator is only obtained by manipulating 
the inverse of a matrix operator. In the application of [16], the 
inverse operator was actually obtained via a finite-difference based 
discretization of the substrate. Figure 4 shows an example of 
the sparsity structure obtained when inverting a sample integral 
operator. The characteristic multiresolutional sparsity structure is 
still evident, but compared to the smooth forward operator, for a 
given numerical threshold used to drop elements in the operator, 
the inverse operator is somewhat less sparse. 

VI. Conclusion 

In this paper we have attempted to evaluate fast potential evaluation 
methods suitable for forming the core of large-scale integral equa- 
tion solvers according to the restricting assumptions that define the 
class of problems for which the algorithms are applicable. 

The FMM class of algorithms is characterized by a common, 
general computational structure (spatial trees). The general oper- 
ation of the algorithms can be specified relatively independently 
of the details of the spatial decomposition (e.g., two vs. three di- 
mensions, oct-trees vs. binary trees) and the details of the M2M, 
M2L, and L2L operators. However, deriving these operators gen- 
erally is fairly troublesome, and so these methods are most useful 
for common kernels like 1/r and eikr/r.  For problems where the 
kernels has such a known analytic structure, and a fairly inhomo- 
geneous geometry, the FMM algorithms are worth consideration 
particularly when high accuracy is required. However, if the kernel 
is non-oscillatory, the wavelet-like methods seem to have most of 
the advantages of FMMs with the possibility for higher degrees of 
numerical compression[ 151. 

The grid-based algorithms also have a very general, but rigid. 
computational structure. Within the constraints of spatial invari- 
ance, broadly defined, the precorrected-FlT method is suited to, 
a wide variety of problems. It is fast for low accuracy calculations 
and has minimal setup overhead. For problems that are not strongly 
geometrically inhomogenous, with complicated kernels that may 
have oscillatory components, this algorithm is the best choice. 

The wavelet-like algorithms appear to be particularly promising 
general purpose methods. They are the only methods that appear 
to be well suited for the representation of implicit andor inverse 
operators. They also seem to be efficient, generating good com- 
pression ratios, and when analytic information about the kernel is 
available, such as the more efficient multipole representations for 
1/r kernels, it can be incorporated into the multilevel scheme to 
increase its efficiency. The one drawback is that, so far, it is un- 
clear how to efficiently represent oscillatory kernels in this sort of 
general framework. 

An important method we have not discussed in detail is the 
SVD/interpolation based approach of [5]. For our purpose, the 
advantages and shortcomings of this method are similar to the 
wavelet-based approaches. The only real restriction is that the 
long-range interactions satisfy an interpolation condition. General 
kernels can be treated easily, but the method is not well suited for 
oscillatory kernels. 
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At this point, therefore, we can conclude that there is no sin- 
gle approach that is best for all problems likely to be encountered 
in integrated circuit analysis problems. Each of the approaches dis- 
cussed here in detail (FMM, precorrected-FFT, and wavelet-like al- 
gorithms) have substantial advantages over the others in some im- 
portant problem domain. With no clear best algorithm, the task 
of constructing generic platforms to address diverse applications 
might seem problematic. However, although the algorithms are 
quite diverse mathematically, there are strong similarities between 
the essential computational and algorithmic structures of the algo- 
rithms. The FMM, wavelet, and SVD classes of algorithms are 
particularly closely related. 

Generic programming methodologies have recently been 
shown to have substantial advantages for numerical computing ap- 
plications, offering the potential to work at high levels of abstrac- 
tion, with generic software components, while at the same time re- 
taining or even increasing numerical efficiency[24]. A reasonable 
path forward therefore seems to be to attempt to identify the least 
common algorithmic subsets of the computational structure of the 
major algorithms discussed above, and then instantiate that knowl- 
edge in an extensible, adaptable software platform. On a given 
problem domain, rapid comparison of the available approaches 
could be made and the best for a given application selected. 
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