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Abstract- We have studied quantum trans- 
port in a Si interband tunneling diode (ITD) 
based upon a tight-binding non-equilibrium 
Green’s function method. In the simulation, 
an empirical tight-binding theory has been 
used to take into account realistic band struc- 
tures. Comparison has been made between the 
results of our multiband (MB) model and those 
of conventional two-band (2B) model. It is 
found that the current-voltage ( I -V)  character- 
istics of the Si ITD have considerably smaller 
peak current density than the 2B model, since 
our MB model reflects the nature of indirect 
gap structure. 

I. INTRODUCTION 

The speed of semiconductor device miniaturiza- 
tion has been accelerated in order to increase packing 
densities and reduce power consumption in integrated 
circuits (IC’s). In particular, progress in Si MOSFETs 
technology has nowadays made it possible to reduce 
gate lengths down to less than 100 nm. However, at 
such small dimensions, conventional FETs suffer from 
inevitable limitations due to the emergence of quan- 
tum effects such as interband tunneling, current fluc- 
tuations, and gate-oxide tunneling. To overcome such 
limitations, devices based on tunneling mechanisms, 
such as interband tunneling diodes (ITD’s), have been 
reconsidered as promising components for future cir- 
cuit technologies, since tunneling occurs within a very 
small region. In addition, they have increased func- 
tionality due to the negative differential resistance, 
which can be used to reduce device numbers in IC’s 
as well as avoid complex circuit design. 

Although various devices have been demonstrated 

[l, 21, full understanding of the device physics is still 
necessary to design device structures and optimize the 
device performance. So far, only simple two-band 
model has been applied to analyze the characteristics 
of ITD’s, but failed to reflect complex band structures 
of the materials. In order to simulate carrier transport 
in such devices realistically, we have to include prop- 
erly the full band structure effect such as the band 
mixing between the conduction band and the valence 
band. 

In this paper, we present calculations of quan- 
tum electron transport in a Si ITD based on a non- 
equilibrium Green’s function formalism. In the next 
section, we describe a tight-binding Green’s function 
method. In our procedure, we employ an empirical 
sp3s* nearest neighbor tight-binding (TB) model[3] 
and an evanescent-wave-mode-matching method to 
include the valley mixing and nonparabolicity effects, 
in addition, possible existence of evanescent modes 
at  heterointerfaces[4, 51. We show numerical results 
compared with those calculated by the conventional 
two band model for a Si ITD. Finally, we summarize 
our conclusion. 

11. SIMULATION MODEL 

The present model refers to a 1D Si n+-p+ ITD as 
schematically shown in Fig. 1. Our simulation ap- 
proach of multiband quantum transport is based on 
a non-equilibrium Green’s function method (NEGF) 
with an empirical tight-binding method. We confine 
ourselves to the analysis of carrier transport in the [0 
0 11 direction in Si crystal. We use an empirical tight- 
binding model with a basis of five orbitals per atom 
(s,p,,py,pz, s*) assuming nearest neighbor overlaps. 
The band structure of Si is then calculated where not 
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only the propagating Bloch modes but also the exis- 
tence of the decaying modes (evanescent ones) in the 
tunneling barrier are taken into account. 

kz 
Fig. 1. Schematic structure of a Si interband tun- 

neling diode (ITD). Two propagating modes 
exist in the conduction band, whereas three 
modes exist in the valence band because the 
heavy hole band is doubly degenerated (ex- 
cluding spin degeneracy). Doping concen- 
trations of N o  = NA = 1 x lo2’ cm-3 are 
assumed. 

The total electron wave function may be ex- 
pressed in terms of the Bloch sum of the electronic 
states as 

I * ( k Z , k I l , ~ ) )  = [ . l a 4 k , ) l ~ l l , ~ , 4  
1,ora,Ca= 

+ Clac(kz)IkII,~,~=)] 7 (1) 

where llcll, 1 ,  d) denotes a Bloch sum of &-like atomic 
orbitals associated with the in-plane wave vector kll , 
IC, the wave vector in propagating direction, 1 labels 
the index of the layer comprised of an atom (a) and 
its nearest neighbor ( c ) .  We follow the treatment of 
the NEGF[6, 7, 81. A propagator G< and a retarded 
Green’s function GR are comprised of the expansion 
coefficients in Eq.(l). The equations of motion for 
G< and G R  in the device are given with the aid of 
the Dyson’s equation by 

G< = GRC<BGRt,  (2) 

GR ,.= (E ,  - H: - (3) 

where G< etc. are matrices , and CRB are 
boundary self-energies, and H: is the Hamiltonian 
of the device region, respectively. The boundary self- 
energies are related to TB parameters and boundary 
conditions in the reservoirs, where the existence of the 
evanescent modes can be duly taken into account[5,9]. 

By solving the equations of motion with respect 
to G <  (kll, Ez) ,  we can calculate both the electron con- 

centration and the current density at layer L as fol- 
lows, 

G,<+,,L(h 7 Ed1 1 , (5) 

where A is the cross sectional area, A is a half of 
the lattice constant, e the electronic charge, tL,,L+1 
is the hopping matrix which is related to the matrix 
elements of the Hamiltonian, Tr denotes trace of the 
matrix, and Re is real part of the physical quantity. 
Poisson’s equation 

da [ € ( Z ) F ]  = e [ n ( Z )  - ND(Z)  4- N A ( z ) ]  , (6) 

is simultaneously solved to include the space charge 
effect for selfconsistent calculation, where E is the di- 
electric constant and ND is the donor and N A  is the 
acceptor doping concentration, respectively. 

The TB and material parameters used in the sim- 
ulation is extracted from the literature[3]. 

111. RESULTS AND DISCUSSION 

Figure 2 shows a comparison of the band struc- 
tures of Si crystal calculated by the conventional two 
band (2B) model and the multi-band (MB) model. 
Imaginary wave vectors are plotted on the left, which 
correspond to decay constants, whereas real wave vec- 
tors corresponding to the Bloch modes are plotted on 
the right. 
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Fig. 2. Comparison of complex band structures of 

Si calculated by the MB (solid lines) and 
the 2B model (dashed lines). The real 
bands (Rek,) are drawn on the right por- 
tion, whereas the imaginary bands (Imk,) 
are on the left. 
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The evanescent modes as well as the real bands 
should be considered at a tunneling interface to match 
electron waves, since a disruption of translational 
symmetry occurs at  the interface. 

It is found that although the effective mass in the 
conduction band is approximated by the 2B model, 
the imaginary bands and, more importantly, the po- 
sition of the conduction band minimum cannot be re- 
produced by the 2B model. When we fit the electron 
effective mass to the actual data, the hole effective 
mass is automatically set equal to that of the electron 
in the 2B model, which is also far from the reality. 
On the other hand, the nearest neighbor MB model 
seems to approximate relatively well the indirect gap 
structure of Si in the [0 0 11 direction. 

To verify the difference of the band structure 
models in the device characteristics of the Si ITD, 
we compare the I-V characteristics of the MB model 
(Fig.3 (a)) with those calculated by the 2B model 
(Fig.3( b)). 
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Fig. 3. (a)l-V characteristics of the Si ITD calcu- 

lated by the multiband (MB) model. (b)I- 
V characteristics calculated by the two-band 
(2B) model. 

It is found that the peak current density of the 
MB model is considerably smaller than that of the 

2B model. To understand the difference between the 
two band models, we show the transmission state 
in Fig. 4 (a) and (b) for the MB and 2B model, 
respectively. The element of the spectral function 
 AN,^(= i(GR - G R t ) ~ , l )  corresponds to the trans- 
mission probability. Since the 2B model assumes the 
band extremes exist at the r valley, electron in the 
s-state in the n+ region tunnels and couples that in 
the p,-state in the p+ region (Fig.4(b)). However, in 
the MB model, the contribution of the s* orbital to 
the X band minimum is so large that tunneling com- 
ponents through other orbitals compete one another. 
As a result, as shown in Fig. 4(a), the s * ,  s,  and 
p ,  electrons are affected with more decay and have 
smaller tunneling probability. Consequently the MB 
model has smaller current density, which reflects the 
indirect gap structure of Si. 
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Fig. 4. (a)Spectral function or transmission am- 

plitude calculated by the multiband (MB) 
model. The s*-component as well as the s 
and p ,  are found to be dominant in the con- 
duction band. (b)Spectral function by the 
2B model. Since both the conduction and 
the valence bands are assumed to be com- 
prised of the s and p,-like atomic orbitals, 
the spectral function is larger than that in 
the MB model. 
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The significant difference of the order of 5 in the 
peak current densities may be due to the TB parame- 
terization [3], where the coupling of the s* orbital with 
the neighboring s states is neglected. Figure 5 shows 
the constant energy surface of Si in the first Brillouin 
zone calculated by the nearest neighbor MB model. 
This figure does not show the 6 rotated ellipsoids seen 
in the conventional ab initio band calculations. This 
fact indicates that the nearest neighbor sp3s* model 
does not sufficiently express the properties of X min- 
ima of Si crystal. That is the reason we have obtained 
considerably smaller current density in the MB model 
although we have taken into account the realistic band 
structures. To analyze quantum transport in Si crys- 
tal more quantitatively, we may have to approximate 
the band structure more accurately by taking into ac- 
count higher (e.g. 2nd nearest neighbor) interactions 
among sp3s* orbitals. 

Fig. 5. Constant energy surface (1.2 5 E 5 1.6 eV: 
X minima) of Si calculated by the nearest 
neighbor interaction sp3s* model. The l-st 
quadrant is cut out to show inside. 

IV. CNCLUSION 

We have studied multiband quantum transport in 
a Si ITD based on the tight-binding non-equilibrium 
Green’s functions, where full-band nature of realis- 
tic band structures and space charge effect are taken 
into account. It is found the conventional 2B model 
cannot analyze the interband tunneling, since the 2B 
model cannot produce the indirect gap structure. On 
the other hand, the MB model can treat properly the 
interband tunneling process in the indirect gap mate- 
rial. It is also found that the transmissivity of the X - r  
interband tunneling is considerably small. This is due 
to the fact that the nearest neighbor approximation 
is insufficient to express the properties of X minima 
in Si crystal. More accurate tight-binding parameter- 
ization is needed for more quantitative analysis of the 
inter band tunneling in indirect gap semiconductors. 
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