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Abrrtract-A new approach for simulating quantum 
transport in nanoscale semiconductor devices is pre- 
sented. The method is based on the self-consistent 
solution of the Poisson and Wigner equations within 
a device. The spherical harmonic approach is used 
to transform the Wigner equation into a tractable ex- 
pression. The results provide the distribution function 
and its averages throughout the device. The method 
has been applied to a MOSFET and a BJT. Inclusion 
of quantum effects reduces carrier concentrations near 
potential energy barriers leading to reduced terminal 
current. 

I. INTRODUCTION 

Simulation of quantum effects has become increasingly 
important as device dimensions shrink below O.lpm, and 
gate oxide thicknesses reduce to only a few nanometers. 
Various methods have been proposed to account for quan- 
tum effects in device simulation [1]-[4].. These various 
approaches have their respective strengths. For exam- 
ple, the moment approaches can give quantum corrections 
to macroscopic quantities such as carrier concentration. 
However, they suffer from many of the same approxi- 
mations as their semiclassical analogues. Furthermore, 
they do not provide a quantum distribution function. On 
the other hand, methods that employ the Wigner formal- 
ism can provide the quantum distribution function, but 
they usually rely on simplified phenomenological scatter- 
ing terms to make their equations tractable for numerical 
solution. As a result, no single method has emerged as 
the approach of choice for modeling quantum phenomena 
in deep submicron and nanoscale electronics. 

We have developed a new approach for modeling quan- 
tum transport in nanoscale semiconductor devices. The 
method is suitable for both 1-D and 2-D applications. It 
accounts in detail for both semiclassical and quantum 
transport. We start with the Wigner transport equa- 
tion. To this equation we then add a semiclassical col- 
lision integral identical to the one used in the Boltzmann 
transport equation (BTE). This allows for the incorpora- 
tion of elastic and inelastic scattering, including optical, 
acoustic phonon and ionized impurity scattering, which 

is critical to determining electron transport in semicon- 
ductors. Modeling is achieved by self-consistently solv- 
ing Poisson equation with the Wigner equation of quan- 
tum transport. Below we show that the Wigner equation 
can be considered to be an extension of the semiclassical 
Boltzmann transport equation. We therefore solve the 
Wigner equation by extending the techniques that have 
already developed for the BTE, including the Spherical 
Harmonic expansion[5]-[7]. Extending the Spherical Har- 
monic methodology to the Wigner equation allows for the 
reduction of dimensionality, as well as for a rigorous treat- 
ment of collisions. The solution of the Wigner transport 
equation provides the Wigner function throughout the de- 
vice, which is usually interpreted to be the quantum dis- 
tribution function. From the Wigner function we directly 
obtain the quantum corrected carrier and current densi- 
ties. We can also extract energy dependent phenomena 
including impact ionization and gate current. 

The new approach has been applied to the simulation of 
a 2-D MOSFET, as well as a 1-D BJT. Results show cor- 
rections which are expected from quantum mechanical cal- 
culations, including reduction in electron concentrations 
in the vicinity of potential energy barriers. These bar- 
ries include the MOSFET gate-oxide interface, the source- 
channel PN junction, as well as the BJT base-emitter 
junction. Calculated MOSFET current-voltage shows a 
small reduction in the drain current when compared to 
the semiclassical results. 

11. THEORY AND REALIZATION 

The Wigner function w(F,$, t )  is defined as the Fourier 
transfo5m of the product of two particle wavefunctio_ns 
$(F& T ’ ,  t )  separated in space by the position vector T ’ :  

By differentiating the Wigner function with respect to 
time, and employing the Schrodinger equation, the trans- 
port equation for the Wigner function can be derived[8]. 
In order to account for collisions, we separate the poten- 
tial into one resulting from fields and barriers, and one 
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due to scattering. The time variation of w due to scatter- 
ing is then given in detail by the collision integral. So the 
steady state Wigner transport equation becomes: 

Where V j  operates only on w, and V,- operates only 
on the potential V(3 .  The functions Sj@,p3 refer to 
scattering rates obtained from Fermi's golden rule. We 
include optical, acoustic and ionized impurity scattering. 
For n = 0, the Wigner transport equation reduces to the 
Boltzmann transport equation. It can therefore be in- 
terpreted that the high order terms of the potential ex- 
pansion give quantum correction to the BTE. The higher 
order term is proportional Tizn, which quickly become neg- 
ligible. In our work we retain the first two terms of the po- 
tential. To analyze semiconductor devices on the nanome- 
ter scale, while including the detailed effects of electronic 
interactions, we first change independznt variables from 
momentum to wave vector using p' = hk. We now employ 
a device model which includes the Poisson equation (3), 
the Wigner equation (5) , and the hole-current continuity 
equation ( 6 ) .  

1 . VzV(F) = 2 [I w(& F, t)dg - p(F, t )  - D(?) 
ES 

V(F) is the potential; p(7 ,  t )  is the hole concentration; 
D(F) is the net ion concentration due to doping; w(r', G, t )  
is the electron Wigner or quantum distribution function; 
E is the energy; r' is the position vector; E, is the silicon 
dielectric constant; pLp is the hole mobility; R(n,p) is the 
recombination rate; Gii(n,p) is the hole generation rate 
from impact ionization. and q V ( 3  is the potential energy. 

We now employ the spherical harmonic expansion 
method, which was previously developed for the BTE, 
and shown to agree with Monte Carlo and experiment[5], 
PI1 PI, PI 

0 0 1  

W(r', G) = wZ"(r',&)qm(&, 4 k )  ( 6 )  
1=0 m=-1 

The spherical harmonics allow us to analytically evaluate 
the collision integral and reduce dimensionality, making 
the Wigner equation tractable for numerical solution. The 
goal now is to find the expansion coefficient_s, which are 
functions of the scalar E instead of the vector k. After con- 
siderable mathematical manipulation, for l-Dimensional 
application, we obtain the following form for the Wigner 
transport equation. 

w1 0 +-q 7 + [QM]oY$ + [QMI1Yf = [%] coll Y$ 

Where 7 = g .  The terms [QM]oY$ and [QMJlY? rep- 
resent the quantum corrections. The remaining terms are 
semiclassical in that they are identical to the semiclassical 
BTE as formulated using spherical harmonics. 

We now project onto the spherical harmonic basis, 
transform our independent variable from momentum mag- 
nitude to energy, we obtain equations for the coefficients 
wo and w1: 

Y 

coll 

Yp : v ( g g w 0 )  

r 246 dx 

where 

and 

(9) 

Substitute w1 in equation (10) in equation (9), we ob- 
tain the following equation: 

v d  dwo qh2 dp 
r {a, (a, + 2 4 F V a , R W o ) ] }  = [$] coll (12) 

where K = KO + K l .  
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Fig.1 The doping profile of the simulated MOSFET. 

Through an analogous process, we can obtain the 
Wigner equation for 2-Dimensional applications: 

Equation (12) ( equation (14) for 2-D) is discretized us- 
ing a Scharfetter-Gumme1 like strategy, and then solved 
self-consistently with the Poisson and hole-current conti- 
nuity equation. The coupled solution is a achieved using 
an iterative Gummel-like process. 

111. RESULTS 

We solve the Wigner equation self consistently with the 
Poisson and hole-continuity equations for a 2-D MOS- 
FET, as well as a l-D BJT. The doping profile of the 
simulated MOSFET is shown in Fig. 1. The ratio of 
electron concentration calculated by the BTE to that ob- 
tained from the Wigner transport equation is shown in 
Fig. 2. We see the classical result predicts a factor of ap- 
proximately two greater than the Wigner result near the 
interface. This is consistent with solutions to the Poisson- 
Schrodinger system. In the substrate the ratro is 1.0 indi- 
cating semiclassical transport in that region. Fig. 3 shows 
that the drain current found by Wigner is about 2 to 7 
percent lower than that by BTE, which is again consis- 
tent with capacitance measurements and theory. Fig. 4 
shows the doping profile of the simulated BJT. For the 
BJT we find that the electron concentration results ob- 
tained by BTE and Wigner equation. are similar deep 

Length(pm) 
Fig. 2 Ratio of the simulated electron concentration: 

BTE/Wigner ( VGS = 0.7V, VDS = 0.5V)  

in the emitter and collector where the potential is rela- 
tively constant. However, in Fig. 5 we show that near 
the emitter-base potential barrier, the electron density by 
obtained by the Wigner equation is lower than that by 
BTE. The difference reaches its peak of about 30% at 
x = 0.7pm where the emitter-base depletion region and 
the potential barrier peak are located. We show the ratio 
of the classical distribution function to the quantum one 
in Fig. 6. The ratios of the classical to quantum distribu- 
tion are very close to unity at  the classical ohmic contacts, 
which is common for the two figures. This is because the 
potential in these regions is relatively constant indicating 
little quantum confinement. The ratios start to increase 
near 0.05pm and reach their peaks near 0.07pm, where 
the barrier regions are located. Again, the calculations 
indicate that the quantum effect suppresses the carrier 
concentration in the vicinity of a barrier. The ratio of 
the distribution functions vary with energy. The quan- 
tum distribution functions predict less electrons at high 
energy than that predicted by the classical result. For 
the classical case, electrons can only surmount the base- 
emitter barrier from thermionic emission. As a result, 
classically only the higher energy electrons can be trans- 
ported from the emitter into the base. However, quantum 
mechanics allows for tunneling of low energy electrons as 
well as injection of high energy electrons from thermionic 
emission. giving rise to a cooler distribution function. 
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Fig. 3. The drain current comparison (Wigner vs. BTE). 
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Fig. 4. The doping profile of the simulated BJT. 
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Fig. 5. Carrier concentration comparison near the 
emitter-base barrier peak (Wigner vs. BTE). 
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Fig. 6. Ratio of the semiclassical to the quantum 
distribution functions (semiclassical/quantum). 
The emitter contact is at x = 0. VBE = 0.7V, 

VCB = 0.5V. 
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