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Abstract - We report the first direct numeri- 
cal solution to the Boltzmann Transport Equation 
(BTE) without making any approximations about 
the angular shape of the distribution function or 
the collision integral. The mathematical and nu- 
merical techniques used for solving this problem 
will be discussed and shown to have the correct 
properties for semiconductor simulation. The ap- 
plications of this method are general and will 
be demonstrated here, for both one-dimensional 
(50nm n+-p-n+) and two-dimensional (50nm ultra- 
thin body dual-gate nMOSFET) devices. 

I. INTRODUCTION 

It has been recently demonstrated that when a rea- 
sonably conventional MOSFET design is scaled down to 
30-60 nm, it operates in the quasi-ballistic regime [l]. 
This is the regime where the carriers get accelerated in 
critical regions of the device without much scattering [2]. 
The “critical region“ turns out to be a low-field region 
of one-mean free path near the source where we expect 
near-equilibrium transport to take place. But, in fact, 
this transport is not ‘hear-equilibrium” in the traditional 
drift-diffusion sense - it is “quasi-ballistic” [3]. The im- 
portance of this effect is seen in the impact on device 
performance and in our physical understanding of device 
scaling issues as we approach the end of the SIA roadmap. 

IIence, as devices shrink, it becomes more important 
to correctly account for strong off-equilibrium and quasi- 
ballistic effects (among others). This work demonstrates 
that that can only be done by a direct numerical so- 
lution of the Boltzmann Transport Equation (BTE) in 
nano-scale devices. This analysis also indicates that 
the underlying assumptions of common macroscopic ap- 
proximations of the BTE (such as drift-diffusion and 
hydrodynamic-type) break down when the distribution 
function of the carriers becomes highly asymmetric in 
critical regions of the device. 

We begin by describing the solution of the steady-state 
non-degenerate BTE by using the correct mathematical 
and numerical techniques. This method is unlike earlier 
stochastic methods of solution [4] and other approximate 
techniques because it does not make any approximations 

about the angular shape of the distribution function or 
the collision integral. Here we present a brief discussion 
of the discretisation and the associated numerical issues 
(discretisation errors, convergence and method for solu- 
tion). We then use this methodology to solve the BTE 
self-consistently for two typical 50nm devices (in both 1D 
and 2D) and study of effect of “quasi-ballistic” transport 
on device performance. 

11. DISCRETISATION 

The steady-state non-degenerate BTE is an equation in 
six-dimensional space 77,: 8 77,; . Therefore, we first de- 
scribe the discretisation of the BTE in momentum space 
and then in real space. For the purposes of this paper, we 
will assume a simple, spherical non-parabolic energy band 
with inelastic acoustic and optical (intervalley) phonon 
scattering and parameters calibrated to bulk Si. However, 
this method is not restricted to a specific band-structure 
because we discretise in both energy and angle in momen- 
tum space. This is done by discretising the momentum 
space into shells of constant energy spacing (denoted by 
AE) and further dividing the shells into spherical angle 
segments (denoted by AB = TINO and AI$ = 2w/Ng). 
The grids used for the purposes of analysis in this paper 
are tabulated in Table 1. 

0.05 eV 528 2112 
0.025 eV 

Table 1: Tabulation of grid sizes ( N k )  used in this work. 

The numbers refer to the total size of the grid Nk = 
NE x NO x N 4 ,  denoting the number of points in momen- 
tum space for which we have to solve the distribution 
function, in each case. 

After generating the grid, we perform a standard gener- 
alised box discretisation (or ‘:control volume integration“) 
of the BTE for all volume elements of the momentum 
space. The application of the method turns out to be 
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non-trivial because of the strict conservation properties 
of the collision integral. However, it can be done by con- 
vertzng the volume collision integral into a surface integral 
over all possible scattering states and then performing a 
five-dimensional numerical integration of the scattering 
rates (for details, please see [5]). This enables us to  pre- 
serve “detailed balance” (charge, momentum and energy 
conservation) in the collision integral that have been dif- 
ficult to handle before. We then test the discrete collision 
term by computing its equilibrium (null) solution and 
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Figure 1 : Equilibrium distributions for phonon scattering 
with increasing Nk. 
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Figure 2: Thermal velocities for distributions in Fig. 1. 

the corresponding thermal velocity (Figs. 1 and 2). As 
expected, we find that as we refine the momentum space 
grid, we approach the analytical solution. Note that the 
effect of energy refinement is more significant than angu- 
lar refinement (under  equilibrium) . 

The box discretisation of the field term converts it into 
an ‘:upwind‘’ matrix that preserves the direction of ac- 
celeration of the field as well as charge. Similar to the 
previous analysis, we test the accuracy of the discrete 
collision and field terms by computing their bulk (null) 
solutions for different fields and plotting velocity of the 
bulk distributions versus field (Fig. 3). Again, we find 
that as we refine Nk,  we obtain the correct answer (com- 
pared to Monte Carlo bulk Si). In this case, the effect of 

energy as well as angular refinement is critical 
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Figure 3: Bulk velocity versus field with momentumspace 
refinement. 

Finally, we include the spatial term by performing a 
similar box discretisation (“control volume integration”) 
on a real space grid (represented by the number of real 
space elements N,). To begin with, we test the accuracy 
by solving the BTE on a fixed 1D potential profile with 
a 20nm region of low field (-1 V/cm), 30nm region of 
high field (-1 x lo5 V/cm) and 60 nm region of low field 
(1 V/cm). The description of the real space grid is given 
in Table 2. The momentum space grid was fixed for this 
analysis (Nk = 4160). 

Table 2: Tabulation of grid sizes (N,) used in this work. 

Fig. 4 shows the average velocity of the solutions for 
different N,. We find that, by refining N,  appropriately, 
we obtain the correct solution compared to Monte Carlo. 

A 
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Figure 4: Average velocity for a fixed 1D potential profile 
with real space refinement (Nk  = 4160 fixed). 

Here, we must point out that such a complete direct 
discretisation of the BTE results in a very large matrix 

51 



equation. The number of unknowns is N = Nz x Nk and 
is usually 2 lo6.  For the first time, such a large system 
of equations has been solved efficiently and quickly by us- 
ing a preconditioned iterative method (restarted GMRES 
[SI). Since the speed of solution critically depends on the 
preconditioner, we have devised a fast preconditioner that 
yields solution speeds of 35 minutes, 15 iterations for lo6 
unknowns (on a 400 MHz Ultra2). The time for solution 
goes as N'.2 (Fig. 5). Furthermore, this method does not 
have large memory requirements to store all the elements 
of a lo6 x lo6 matrix because they are generated on the 
fly only when required in the matrix-vector multiplication 
step of the iterative method. 

4 

Figure 5: Time taken to solve BTE with N unknowns 
(numbers on the plot denote number of iterations). 
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Finally, we find that coupling the BTE to the non- 
linear Poisson equation is extremely stable and converges 
in NN 8 iterations for a typical device (Fig. 6). 
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Figure 6: Convergence of BTE-Poisson iterations. 

111. APPLICATIONS 

We apply the above method to solve the BTE self- 
consistently in a 1D n+-pnt  device with a 50 nm chan- 
nel. This solution is then compared to the corresponding 
self-consistent ballistic ( i . e .  without scattering) solution 
at high bias. Fig. 7 shows that the average velocities 

of the two solutions are comparable in the low-field re- 
gion near the source. This suggests that the distribution 
functions are highly asymmetric in the critical regions of 
these nanoscale devices. This concept can be measured in 
terms of the reflection coefficient r,  = j-/jt [2] (Fig. 8). 
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Figure 7: Average velocity (with scattering and ballistic) 
for n+-p-nt device with 50 nm channel at 0.6V bias. 
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Figure 8: Reflection coefficient and potential profile for 
device in Fig. 7. 
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Figure 9: Reflection coefficient and conduction band pro- 
file for nMOSFET with 50 nm channel at VGS = VDS = 
0.6V. 

Similarly, we solve the BTE for a dual-gate ultra-thin 
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body 50 nm channel nMOSFET with to, = 2nm and 
tsi = 10nm. We choose an undoped channel and ad- 
just the V+ by using a mid-gap metal with a suitable 
work function. In addition, a complete definition of a 2D 
device requires a boundary condition on the insulating 
surface in terms of surface scattering [7]. We choose 6% 
diffusive scattering that effectively reduces the inversion 
layer mobility to with respect to the transverse field [8]. 
Fig. 9 shows that the reflection coefficient at high bias 
(0.6 V) drop sharply at the top of the barrier. Fig. 10 
shows that the average velocity inside the device shows 
moderate velocity overshoot at the bias under considera- 
tion. 

x lo6 

150 

x lo6 
12\ V,,= 0.6 V 

150 

Figure 10: Average velocity for nMOSFET in Fig. 9. 

IV. SUMMARY 

This work shows that a direct numerical solution of 
the BTE is possible and provides a correct description of 
the effects of quasi-ballistic, velocity overshoot and non- 
equilibrium transport in nano-scale devices. 
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