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Abstract - A simple, physical view of carrier 
transport in nanoscale MOSFETs is presented. 
The role of ballistic transport, scattering and o f f -  
equilibrium transport, and quantum transport are 
illustrated by numerical simulation, and the 
limitations of common approaches used for device 
TCAD are examined. 

I. INTRODUCTlON 
Recent work shows that MOSFETs now operate 

surprisingly close to their ballistic limits [l ,  21. In the 
past, physically detailed simulations have led us to an 
understanding of the hot carrier and off-equilibrium 
transport effects such as velocity overshoot that occur under 
collision-dominated conditions [3-51, but to develop 
nanoscale MOSFETs and sound, physics-based models for 
them, a clear understanding of quasi-ballistic transport is 
needed. In this paper we show that the essential transport 
physics as illuminated by detailed simulations, can be 
understood in a simple way, one that helps to interpret 
detailed simulations (and even to detect errors in them) and 
that should prove useful in developing physically sound 
models for nanoscale MOSFET's. 

Figure 1 summarizes the essential physical picture. 
Carriers are injected into the channel from a thermal 
equilibrium resevoir (the source), across a potential energy 
barrier whose height is modulated by the gate voltage, into 
the channel, which begins at the top of the barrier. The 
beginning of the channel is populated by carriers injected 
from the thermal equilibrium source. The density of 
carriers at the top of the barrier is set by MOS 
electrostatics so that the charge in the semiconductor 
balances that in the gate. For a device with low DIBL, 
equilibrium, 1D MOS electrostatics apply at this point, so 
the inversion layer density may be computed as a 1D MOS 
capacitor. Above threshold, 

where C, is the effective oxide capacitance (as influenced 
by quantum mechanical confinement, polysilicon 
depletion, etc.). 

Some carriers injected into the channel backscatter and 
return to the source; others flow out the drain and comprise 
the steady-state drain current, ID. Assuming current 
continuity, ID may be evaluated at the beginning of the 
channel where the carrier density is known to find 

Fig. 1 The conduction band edge vs. position from the 
source to the drain of a nanoscale MOSFET under 
high gate and drain bias. 

where <u(O)> is the average velocity of carriers at the 
beginning of the channel. The maximum value of <u(O)> 
is approximately the uni-directional thermal velocity, U,, 
because the positive velocity carriers at the beginning of 
the channel were injected from the thermal equilibrium 
source [6, 71. Backscattering from the channel determines 
how close to this upper limit the device operates. Velocity 
overshoot occurs within the channel and determines the 
carrier density profile, which, through Poisson's equation 
sets the self-consistent profile through out the entire 
channel. 

Figure 2 is a fluid flow analogy for the MOSFET 
under high gate and drain bias. Carrier transport through 
the drain end of the channel is rapid, because strong 
velocity overshoot occurs there. As a result, the d.c. 
current is controlled by how rapidly carriers are transported 
across a short low-field region near the beginning of the 
channel. Carriers diffuse across the beginning of the 
channel much the same way that they diffuse across the 
base of a bipolar transistor, and they are collected by the 
high-field portion of the channel much as in the collector 
of a bipolar transistor. The length of the current-limiting 
region at the beginning of the channel (which is set by 2D 
electrostatics as influenced by velocity overshoot within 
the channel) is about one-mean-free path, which means that 
a successful transport model must describe transport under 
quasi-ballistic conditions. Most of the models in use 
today, however, were developed under collision-dominated 
assumptions. These models often fail to describe quasi- 
ballistic transport in the current-limiting region and can, 
therefore, incorrectly predict MOSFET drain currents [8]. 
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Fig. 2 A fluid flow analogy for the MOSFET under high gate 
and drain bias conditions. 

In the following sections, we use detailed, numerical 
simulations to confirm this basic physical picture and to 
expand upon it. 

II. BALLISTIC TRANSPORT 
The transport physics of nanotransistors most is 

clearly examined in the ballistic limit, but since current day 
devices operate so close to the ballistic limit, there is also 
a practical motivation to examine this limit. Ballistic I-V 
curves may be computed in two different ways. The first 
uses 1 D calculations from Schrodinger-Poisson 
simulations [7]. The second combines 2D electrostatics, 
which is essential for MOSFETs, and a 1D transport 
model, which can be justified for thin-body SO1 or for the 
inversion layer of a MOSFET. Figure 3 shows the self- 
consistent conduction band profile computed for an L = 
lOnm double gate SO1 MOSFET 

Increasing 
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Fig. 3 The computed self-consistent conduction band edge 
vs. position for an L = 10 nm double gate MOSFET 
with r, = 1.0 nm, tsi = 2.0 nm, and V, -Vr = 0.4V. 
Results are shown for several different drain biases. 

In Sec. I, we argued that the average carrier velocity at 
the beginning of the channel was the uni-directional 
thermal velocity, v, Assuming that only one subband is 
occupied [7,9], 

(3) 

where = ( E ,  - Ec)I k,T , and the factor in brackets 
accounts for carrier degeneracy and approaches unity for a 
nondegenerate gas. (More generally, when multiple 
subbands are occupied, Schrodinger-Poisson simulations 
are needed.) Figure 4 shows the V, vs. n, characteristic for 
the 10 nm DG SO1 MOSFET. Note that in subthreshold, 
v, = 1.2x107cm/s, but that above threshold, the caniers 
become degenerate and the thermal injection velocity 
increases. These are the maximum velocities that can be 
observed at the source; they exceed the saturated velocity, 
but the origin of this high velocity is much different than 
that of conventional velocity overshoot that occurs in steep 
electric field gradients. (Nevertheless, there must be strong 
conventional velocity overshoot within the channel, or 
these high velocities will not be observed near the source.) 

Figure 5 is a plot of <u(O)> vs. drain bias. Under low 
bias, the average velocity is nearly zero because the 
negative velocities of carriers injected from the drain nearly 
cancel the positive velocities of those injected from the 
source. When the drain bias exceeds a few kT/q,  then the 
negative velocity carriers are suppressed, and the average 
velocity approaches U,. Note that under a high drain bias, 
the carrier distribution at x = 0 has a highly 
nonequilibrium, hemi-Maxwellian, shape. This is also 
illustrated in Fig. 5 ,  which shows the ratio, r ,  of the 
negative flux to the positive flux. Note that the net 
velocity saturates at vT = 1.7 x lo7 cm/s when the drain bias 
is large enough to suppress the injection of negative- 
velocity carriers from the drain. This value is just the 
thermal injection velocity shown in Fig. 4. 

For low VDs, the velocity distribution is nearly 
symmetrical about U, = 0, but under high drain bias, the 
distribution at the source assumes an asymmetrical, hemi- 
Maxwellian shape. It might appear, therefore, that rzT(0) 
would be one-half of its equilibrium value, eq. (1). MOS 
electrostatics, however, demand that charge balance, so the 
conduction band is pushed down, more electrons are 
injected from the source, and n,(O) is maintained 
approximately at the value given by eq. (1). This barrier 
lowering effect is seen in Fig. 3, and a plot of <n,(O)> vs. 
VDs confirms that in a “well-tempered MOSFET,” which is 
designed to electrostatically isolate the drain from the 
source [ 101, MOS electrostatics maintain the inversion 
layer charge at the beginning of the channel at an 
approximately constant value. (The same effect has also 
been observed in 2D Monte Carlo simulations [ 1 I].) 
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Fig. 4 The thermal injection velocity, vT vs. inversion 
layer density, ns for the DG SO1 MOSFET. 

Fig. 5 The average velocity at the beginning of the channel 
vs. VDs for the device of Fig. 3. For this gate 
ns = 5~1O'~cm-*. Also shown is the ratio, r,  of 
negative to positive flux, which is a measure of the 
anisotropy of the distribution (dashed line). 

111. SCATERING 
In a ballistic MOSFET, positive velocity carriers 

come from the source and negative velocity carriers from 
the drain, but in a real MOSFET, scattering mixes the two 
streams. The result is that cu(O)> is less than vr. 
Assuming V,, is greater than a few kT/q, then all negative 
velocity carriers arise from backscattering, and one can 
readily show 

where 0 c r c 1 is the fraction of the injected carriers that 
backscatter and leave the channel. Well-designed 
MOSFETs currently operate with r = 0.5 [2], so from eq. 
(4) cu(O)> is about one-third of its limit, but devices with 
r = 0.2 have been recently reported [l] .  Note that when 
eq. (4) is inserted into eq. (2), we get a result presented 
earlier [6, 121. 

Since backscattering is what limits the drive-current of 
a MOSFET, so one should understand what controls r. 
The model calculations displayed in Fig. 6 address this 
issue. Thermal equilibrium carriers are injected into a 
constant-field region and tracked by Monte Carlo 
simulation (we used the model of [13] with an ionized 
impurity density of 3 x 10" cm-3 which produces a low 
field mean-free-path of =9 nm). The simulations reveal 
that if carriers travel more than about kT/q down the 
potential, then even if they do scatter, they are unlikely to 
emerge from the channel and contribute to r. (Price noted a 
similar effect some time ago [ 141). These observations are 
supported by the data plotted in Fig. 6, which shows the 
fraction backscattered vs. the maximum distance the carriers 
penetrated into the channel. The critical distance, l ,  over 
which the first kT/q potential drop occurs is also noted. 
Note that when a high field is present, -65% of the 
backscattered carriers only penetrated to the first kT/q of 
potential drop. These results show that r is most sensitive 
to scattering in the so-called kT layer, an effect that is 
closely analogous to the well-known Bethe condition for 
thermionic emission [ 151. 

The backscattering coefficient for a field-free slab of 
length, L, is [16] 

where h, is the near-equilibrium mean-free-path. When 
an electric field is present, eq. (5a) must be modified to [6] 

I r = -  
e+a, 

assuming that I C  L .  Note that we use the near- 
equilibrium mean-free-path because the scattering that 
contributes to r occurs in the initial kT layer, before 
carriers have been significantly heated. Equation (5b) 
generally agrees well with Monte Carlo simulations, which 
confirms that the near-equilibrium mobility is an important 
physical parameter because it controls backscattering in the 
critical portion of the channel.) 
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Fig. 6 The fraction backscattered vs. distance penetrated 

into the channel. The channel is 50nm long with a 
OV (dashed line) or 1V applied across it. 

Another way to view this problem is in terms of 
diffusion across the current limiting region. As suggested 
by Fig. 2, carriers must diffuse across the initial low-field 
part of the channel before they are collected by the high- 
field portion of the channel, which is a nearly perfect 
absorber for those carriers that reach it. This is the classic 
problem of diffusion across a thin base [17]. It's clear that 
in the limit that the region is short, or that scattering is 
weak, the maximum diffusion velocity is the thermal 
velocity, I+. 

4. QUANTUMTRANSPORT 
Quantum confinement effects on the threshold voltage 

and gate capacitance and quantum mechanical tunneling 
currents are now rather well understood, and techniques to 
treat them in simulations are available [18]. In nanoscale 
MOSFETs, however, the channel length is approaching 
dimensions that are comparable to the thickness of an 
inverion layer, so the role of quantum transport along the 
channel needs to be examined [19]. 

Figure 7 compare the ballistic I-V characteristics of the 
10 nm DG SO1 MOSFET as computed by classical and 
quantum approaches. (The quantum mechanical 
simulations use a Green's function method [20].) What is 
most surprising is how small the differences are, even at 
lOnm channel lengths. One important effect is the small 
increase in subthreshold swing (from 66 to 70 mV/dec) 
which is due to quantum mechanical tunneling through the 
source to channel barrier. The fundamental scaling limit of 
this device, which occur when carriers tunneling directly 
from source to drain, is apparently less than 10nm. 

There is, of course, much more to consider with regard 
to transport at the quantum scale, but these simple 
calculations show that the MOSFET is essentially a 
classical device and that quantum interference effects are not 
expected to be strong. 

Fig. 7 The log(lD) vs. vGs characteristics of the lOnm DG 
SO1 MOSFET as computed by a classical (dashed) and 
quantum mechnical (solid) simulation for V,  = 0.05 
and OSV. 

5 .  DEVICE TCAD 
A critical issue now is to examine the validity of 

TCAD tools developed in the past for relatively large 
devices to the devices with nanoscale channel lengths that 
are now being developed. Figure 8 compares some drift- 
diffusion simulations to ballistic simulations. As 
discussed in the previous section, classical and quantum 
transport models give very similar predictions. The 
conventional drift-diffusion simulation predicts rather low 
current because the velocity within the channel is 
unphysically clamped at usat as shown in Fig. 9. 
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Fig. 8 ID vs. VD for V, = 0.5V for the 10 nm DG-SO1 
MOSFET as computed by classical ballistic, quantum 
ballistic, drift-diffusion, and drift-diffusion with a 
constant mobility. 
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Fig. 9 Average velocity vs. position at V, = V, = 0.W for 
the 10 nm DG SOI-MOSFET. For reference, we also 
show the conduction band profile; the beginning of 
the channel is at the top of the barrier. 

For comparision, we also show the results of a DD 
simulation with a constant mobility, so that velocity 
saturation does not occur. As shown in Fig. 8, the 
computed drain current exceeds the ballistic limit. It may 
be thought that this result is due to the unphysicaily high 
velocites near the drain, which are shown in Fig. 9. As 
Fig. 9 shows, however, the real problem is that the 
velocity at the beginning of the channel exceeds the 
thermal limit, vT. Recall that carriers diffuse across the 
low-field region at the beginning of the channel. In the 
conventional drift-diffusion equation, there is no 
mechanism to limit the diffusion velocity to the thermal 
velocity. The limitation arises from the convective part of 
the kinetic energy, which is ignored in most transport 
models [21]. 

A proper treatment of carrier transport in nanoscale 
MOSFETs must allow strong velocity overshoot within 
the channel, but it must not allow the velocity to exceed 
the thermal limit at the beginning of the channel. Energy 
transport models were developed to treat hot carrier effects 
and velocity overshoot, but they also ignore the convective 
part of the kinetic energy. As a result, energy transport 
models don’t enforce the thermal velocity limit at the 
beginning of the channel, and they generally over-predict 
the on-current of a nanoscale MOSFET [8]. The 
development of a transport model that works from the 
diffusive to ballistic regimes is a major challenge for the 
modeling and simulation community [8]. 

VI. SUMMARY 
We presented a simple view of the essential physics of 

canier transport in nanoscale MOS transistors and showed 
that in spite of the complex non-local transport that occurs 
in such devices, the physics that determines the steady-state 

current can be simply explained. With this conceptual 
view, the upper limit performance of a device is readily 
established, and the limitations of existing TCAD transport 
models are clearly illustrated. This view should prove 
useful in interpreting detailed simulations and in guiding 
the development of nanoscale transistors and TCAD models 
for them. 
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