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Modeling and formulation of full-band quantum transport based on a non- 
equilibrium tight-binding Green’s function method are presented where real- 
istic band structures, evanescent-mode matching, space charge effect, and s- 
cattering effects are taken into account. Our results show that current-voltage 
characteristics of a GaAs/AlAs double-barrier RTD have larger current densi- 
ties than the conventional single band model since the latter model is found to 
overestimate the decay constant in the barriers. I t  should be also noted that 
the full-band nature and polar optical phonon scattering effects significantly 
change the results of conventional RTD simulations. 

1. Introduction 
Electron tunneling in semiconductor heterostruc- 

tures has been extensively studied for both its un- 
derlying physics arid its device applications such as 
high-speed digital circuits since the first observation 
in a double-barrier resonant-tunneling diode (DBRT- 
D) [l]. For comprehensive understanding of device 
physics, many assumptions, e.g., the use of effective- 
mass single band structure model, the Esaki-Tsu cur- 
rent density formula, and Thomas-Fermi (T-F) charge 
screening, have been widely used in conventional sim- 
ulations. However, in order to simulate quantum 
transport of carriers in present quantum devices more 
realistically and quantitatively, we have to avoid such 
assumptions, since experimental results often reflect 
the effects of nonparabolicity and multiple valleys of 
the realistic band[& 31. 

In this paper, we will present quantum transport 
inodeling based on a non-equilibrium Green’s function 
met,hod. In the formulation, we adopt full-band (FB) 
treatment based on a tight binding theory to include 
the valley-mixing and nonparabolicity effects, in ad- 
dition, possible existence of evanescent modes[4, 51 at  
heterointerfaces. The effect of polar-optical phonon 
Scattering and interface roughness scattering are also 
included in the calculation through self-energy terms. 

In the next section, we will briefly explain the 
full-band tight-binding Green’s function method. In 
section 3, we will discuss our results and finally we 

will summarize our conclusion. 

2. Evanescent Waves and Green’s Func- 
t ions 

The Hamiltonian of DBRTD system generally has 
the form 

H~ = H,D + H,L + H,R+ H,L” + HE”, (1) 
where H f  is the Hamiltonian of the device, H,$ that 
of the left reservoir, and H,fD denotes the coupling of 
the left contact to the device, and so on. We confine 
ourselyes to the analysis of carrier transport in the [0 
0 11 direction in zinc-blende crystals. Then we can use 
an empirical tight-binding model with a basis of five 
orbitals per atom (s, p , ,  p , ,  p , ,  s*) assuming nearest 
neighbor overlaps, where s* implies an excited s-state 
which includes the interaction from inner shells. The 
total electron wave function can be expressed in terms 
of the Bloch sum of the anion ( a )  and cation (c )  states 
as 

lwb~~~,4)  = [ C l a a ( k ) l q l , 4 a a )  
l,aa,ac 

+ C l a C ( h ) l k l l , ~ , a C ) ]  , (2) 
where lkll,Z,aJ) denotes a Bloch sum of &-like ( j  = 
a ,c )  atomic orbitals associated with the in-plane 
wave vector kll, k, the wave vector in propagat- 
ing direction, Z labels the index of the layer com- 
prised of both the anion and cation atoms. Sub- 
stituting I !P(k,, kll, z ) )  into the Schrodinger equation 
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(H:'"' - E)I @ ( I C , ,  kll, z ) )  = 0, where E is electron en- 
ergy, yields an eigenvalue equation for electron waves 
existing in the left (or right) electrode crystal. P r e  
jecting the resulting equation in atomic orbitals locat- 
ed at  atomic layer 1 leads to an equation relating the 
coefficients at  layer 1 + 1 to those at layers 1 and 1 - 1. 
Finally we can express the eigenvalue equation with 
the aid of transfer matrices as 

TC = exp (ik,A) C ,  (3) 

whkre A is atomic monolayer spacing, 

boundary self-energies, C< and C" are self-energies 
for scattering. The boundary self-energies are relat- 
ed to material parameters and boundary conditions 
in the reservoirs, where the existence of the evanes- 
cent modes can be duly taken into account using the 
solution of Eq.(3)[5, 81. We confine ourselves to po- 
lar longitudinal optical phonon (POP) and interface- 
roughness (IR) scatterings. Then the matrix element 
of the POP scattering self-energy is given by the fol- 
lowing equation extending the expression[9, 101 into 
the FB space, 

Since the transfer matrix T is a function of E ,  the 
eigenvalue equation (3) can be solved to find the com- 
plex energy-band diagram as well as the evanescent 
electron waves in the reservoir. 

In our calculation, two non-equilibrium Green's 
functions, G< and GR, are used for the analysis of 
quantum transport in the device. Assuming these ex- 
pansion coefficients c ~ , , ~  ,k,, 's are field operators, the 
Green's functions in the multiband space are defined 

I 

as 

G:,L:,~,IAkI+ t') = q t  - t') [Ga>,L,d,L@II; 4 t') 
, - Ga<,L,,',L4kII; 4 t ')] 7 (10) 

where 6( t  - t') is a step function and L denotes the in- 
dex of a layer comprised of both the anion and cation 
atoms, that is ( 1 , l  -t 1) E L. We follow the treatment 
of the Dyson equations by Caroli [6] and its extension 
to the FB space by Lake [7]. The equation of motion 
for G< and G R  in the device is given with the use of 
the Dyson equations by 

G< = GR(C<B + C<)GRt, 
G" = (EZ - H: - C R B  - E R ) - ' ,  

(11) 
(12) 

where G< etc .  
trix elements defined in Eq.(lO), 

are matrices comprised of the ma- 
and X H B  are 

where q,  w ,  nq, and uk- denote the POP wave num- 
ber, frequency, occupation number, and the electron- 
phonon coupling coefficient, respectively, v,,,~ takes 
either -1/2, 1/2, or 0 for, (cy = c,a' = a) ,  (cy = 
a,a' = c ) ,  or otherwise, respectively. IR scattering 
is estimated by assuming an exponential correlation 
function:(A.rAr') = exp ( - I T  - #[/A),  where A is as- 
sumed to be 10 nm. 

By solving the equation of motion (Eq.(ll)) with 
respect to G<(kll, Ez), we can calculate both the elec- 
tron concentration and the current density at layer L 
as follows, 

(I 

(14 

where A is the cross sectional area, e the electronic 
charge, Tr denotes trace of the matrix, and Re is 
real part of the physical quantity. Poisson's equation 
is simultaneously solved to include the space charge 
effect for selfconsistent calculation. 

3. Results and Discussion 

Figure 1 shows a comparison of the complex band 
structure of the AlAs barrier calculated by the con-, 
ventional single band (SB) model and the FB model. 
Imaginary wave vectors are plotted on the left, which 
correspond to decay constants, whereas real wave vec- 
tors are plotted on the right. The complex modes 
(evanescent modes) as well as the real bands should 
be considered at an interface to match electron waves 
existing in the GaAs/AlAs heterostructure, since a 
disruption of translational symmetry occurs at  the in- 
terface. 
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Fig. 1 Complex band structures of AlAs barrier. 
Those calculated by the SB model is shown for 
Comparison. 
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Fig. 2 Calculated band structure and carrier con- 
centration of a GaAs/AlAs DBRTD at first 
resonance based on the self-consistent FB 
model compared with the Thomas-Fermi (T- 
F) model. 

We focus on electron transport in a GaAs/AlAs 
DBRTD fabricated on (001) GaAs as schematically 
illustrated in Fig. 2. Barrier, well, and non-doped 
spacer width are 6, 20, and 35 mono-layers, respec- 
tively. Donor concentration is assumed to be 1 x 10'' 
cm-3. Figure 2 also shows comparison of the carrier 
concentration profiles calculated self-consistently by 
the FB model and the Thomas-Fermi (T-F) model un- 
der a resonant condition (VB = 0.28V). Because the 
T-F model [ll, 121 assumes three dimensional density 
of states throughout the devices, there are little elec- 
trons in the well and much accumulation of electrons 
at the left electrode-barrier interface. However, due 
to the quantization in these regions, energies close to 
the local conduction band edge are not. allowed, that 
is, we can no longer use three dimensional density of 
states in these regions. On the other hand, the present 
Green's function method can treat the quantum size 
effect naturally at  any bias condition. The results 

indicate that the .conventional T-F assumption is no 
longer valid and the space charge effect may signifi- 
cantly change the results of tunneling characteristics. 

The FB model includes the transport via r - X  (or 
reverse) channel. Figure 3 shows a comparison of the 
transmission coefficient for electrons with E = 0.1-EF 
between the FB model and the SB model. The SB 
model shows only one resonant peak due to the r-r 
tunneling at a voltage around 0.32 V. On the other 
hand the FB model shows two peaks, the latter of 
which is due to the r - X  resonance, in addition, two 
anti-resonance dips. 
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Fig. 3 Transmission coefficient as a function of the 
bias voltage. The incident electron energy 
is assumed 10% of the Fermi energy (EF)in 
the left reservoir. Solid line is calculated by 
the FB model and dashed line SB model. 
The first arrow indicates the r-r resonance 
while the second the r-X resonance. 
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Fig. 4 Spectral function for electrons with E = 0.1- 
EF,  r,  and X potential profile at the r - X  
resonance. 

To understand the physical mechanisms at these 
resonant peaks, the spectral function, which has sim- 
ilar physical meaning of the density of states, at the 
second peak is drawn in Fig. 4. The first peak in 
Fig. 3 is due to the tunneling via r-level in the well, 
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whereas the second peak is found to be due to the 
resonant tunneling via X-valley resonant level in the 
right barrier. 
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Fig. 5 I-V cliaract,eristics of the DBRTD calculat- 
ed by the self-consistent tight binding full- 
band (FB) model (solid line) and the SB 
model (dashed line). 

Figure 5 shows I-V characteristics of the DBRTD 
calculated by the FB model and the SB model, both 
without any scattering effects. The current densities 
in the FB model is larger than the SB model. The 
reason is that the SB model overestimates the decay 
constant in the barriers (see Fig.l), because it assumes 
a constant effective mass. On the other hand, the FB 
model can reflect the realistic band structures both in 
the real and the imaginary bands, and has a small- 
er decay constant, which results in the larger current 
densities. The FB model can include the transport vi- 
a r - X  channel, however, such channel does not play a 
crucial role to  increase the current density drastically 
in the present structure, since we have assumed thin 
AlAs barriers (6 MLs) in our model. 
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Fig. 6 Comparison of I-V characteristics including 
scattering mechanisms. 

Figure 6 shows comparison of the I-V character- 
istics with POP and IR scattering taken into account 

in our FB model and without POP scattering. We 
note that the peak current is slightly increased by 
the POP scattering and a pronounced phonon peak is 
clearly observed in the valley current, which is qual- 
itatively consistent with the experimental results[l3]. 
Although we have to  include other scattering mecha- 
nisms such as the ionized impurity scattering, acoustic 
phonon scattering etc. for quantitative comparison, 
the POP scattering may be the crucial scattering ef- 
fect which degrades the peak-to-valley current ratio 
of GaAs/AlAs based DBRTDs. 

4. Conclusion 
We have formulated quantum transport based on 

the non-equilibrium Green’s functions where full-band 
nature of realistic band structures, space charge effect, 
and the scattering effects are taken into account. As a 
result, conventional single band model is found to  be 
inaccurate due to overestimate of decay constant in 
the barriers. The Thomas-Fermi assumption is found 
to  be invalid. Although the phonon scattering effect 
slightly increases the peak current, it significantly in- 
creases valley current, which may be responsible for 
degradation of the peak to valley current ratio in most 
DBRTs. 
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