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Abstract 

Electrostatic force feedback loops are commonly used for measurement and position control in micromechanical sensors and actuators. They are 
widely implemented with switched capacitor, sigma-delta(WA) architectures as they provide perfect compatibility with capacitive sensing 
methods. The electromechanical subsystem, as a vital part of a C/A-loop, strongly influences the loop characteristics. In order to characterize a 
X/A-loop, however, transient simulations over a long time period are inevitable. Full 3-D physical simulations (FEM/BEM) at system level are 
numerically impractical. Therefore, effective macromodels of the electro-mechanical subsystem are required. Established macromodels can 
handle one-dimensional systems and weakly coupled multi-dimensional systems but are not applicable to multidimensional, multi-electrode 
systems [ 1,2,3]. A novel modeling technique is presented for micromechanical, multi-electrode structures which is based on Lagrange's 
equations. It considers the coupling of the structure kinematics with the electrical field between the electrodes. It further reflects parasitic 
excitation of the mechanical fundamental eigenmodes of the structure. The technique is applied to a new electrostatic levitation system 
controlling a micromechanical plate. 

1. Introduction 

Fig. 1 shows an example of a conducting moveable plate situated 
between two sets of eight fixed electrodes. If voltages are applied 
to the electrodes, electrostatic forces are generated which are 
capable of balancing inertial forces and, therefore, bringing the 
plate into the desired position. Using the same electrode 
arrangement allows capacitive sensing of the two tilting degrees of 
freedom and the vertical translation of the plate. Hence, appropriate 
adjustment of the forces, i.e. control of the electrode voltages as a 
function of the position of the plate, allows stable levitation of the 
plate. 

State-of-the-art capacitive sensing is realized with a CMOS 
switched capacitor circuit which naturally leads to time- 
multiplexed sensing and feedback at high frequencies. Often, 
through quantization of the feedback force, a UA-structure is 
obtained where the mechanical elements act as the required low 
pass filter [2]. Therefore, the plate is subjected to forces which have 
a broadband frequency spectrum and thus can excite eigenmodes. 
By refining the electrode structures, it becomes possible to sense 
and control these modes. In fact, in the structure shown the first 
bending mode can be controlled. 

Design and characterization of stable position control and 
measurement systems in VA-architecture require models which 
describe the kinematics of the mechanical system including the first 
eigenmodes which lie in the frequency band of interest. With a 
view to proving the system stability and analyzing its performance, 
it is crucial to model the system-inherent non-linearity and cross- 
coupling effects. On the other hand, since VA-modulation is a 
frequency based technique (noise shaping), long transient 
simulations are required to verify the effects of the mechanical 
subsystem on the inherent signal processing. In other words, a 
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method is required which extracts behavioral macromodels 
allowing for of simulation at system level. 

2. Theory 

The method presented here belongs to the basic-function methods 
[4] and is based on Lagrange's equations [5]  

where T denotes the kinetic energy, Epol the potential energy, qv 
the generalized coordinates, = dq, the generalized velocities and 

" dt 
t the time 

These equations imply that the possible motions of the mechanical 
structure are described by a set of discrete generalized coordinates 
qv Therefore, from an infinite number of degrees of freedom 
associated with the continuously deformable structure, a limited 
number of motion configurations have to be selected and related to 
the generalized coordinates. Hence, using the Lagrange equations 
restricts the possible shape and position of the mechanical 
structure. 

In the case of a flexible moveable disk, the appropriate choice for a 
set of motion configurations is the six degrees of freedom which 
represent the rigid body motions of the undeformed structure and, 
additionally, the amplitudes of the eigenmodes of interest. While 
this choice is sufficient for a floating structure, the rigid body 
position of a flexible suspended structure may be overconstrained, 
where the suspension is understood as mechanical coupling to 
further mechanical structures, described by a force/displacement 
pair. Hence, further deformation shapes have to be defined to 

Fig..'l: A micromechanical, multi-electrode system for levitation of a conducting moveable plate situated between two sets of electrodes. 
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associate a rigid body position and a appropriate deformation with 
each possible displacement configuration at the suspension points. 
It is practicable to use this displacements configurations Gsus as 
the first subset of the generalized coordinates qv and the 
amplitudes mi of the eigenmodes as the remaining ones. The 
displacement at the location % of the undeformed structure can 
be described by 

ii($ = gB(iisus) + Q(iisu* I? + g(qus, g)  + G(qu, 9 94 
where gB denotes the translation of the basis point of the 

undeformed structure, the rotation of the undeformed structure 

with respect to the basis point ?, , g the deformation shapes, due 

to a overconstrained suspension, and G the deformation due to the 
eigenmodes. 

Since the eigenmode representation is based on a linearized system, 
it is suggestive to linearize the deformations shapes and 
eigenmodes with respect to the undeformed structure. Then, the 
structures deformation is notated in a separated formulation 

~ [ i i , , , ,  mr . As only small deformations are expected in most 
applications, the material can be assumed linear and the error 
introduced thereby neglected. For non-linear material a partial 
correction occurs, since the inner potential energy, which is related 
to the nonlinear stiffness of the material and inserted in the 
Lagrange equations, is still correct for a given deformation. 

The eigenmode shapes G are obtained analytically or by FEM 
simulation from the usual separation formulation under the 
condition that the suspension displacements are held at zero. For a 
structure with an underconstrained suspension, undefined degrees 
of freedom for the rigid body modes exist, which require further 
side conditions. Setting the integral of these free body motions over 
the structures volume to zero is practicable, since this decouples 
partially the rigid body motions from the eigenmodes. 

Even if the eigenmodes are likely to be close to the modes of the 
loaded system, they are not exactly identical to them. However, it 
would not be effective to take a certain load on the mechanical 
structure into consideration while determining the mode shapes,' 
since the load depends on the state of the system and is therefore 
not predictable. This modeling error introduced thereby can be 
estimated from worst case analysis. 

State of the art computing efficiency allows fast eigenmode 
analysis even for complex structures and, thus, for most practicable 
complete moveable structures. This definition describes structures 
whose suspension is fixed or the entire body is floating. The focus 
will be on this type of structures below. The displacement ii at the 

location % reduces to 

ii(%) = &)m 

in the first case and 

G(%) = a, + Q(4, 3, p)(% + @)m) 

in the second one, where ?,r stands for the motion of the center of 

mass and for the rotation of the undeformed body, described by 
the eulerian angles 4, 3, p . Note that the first notation is included 
in the second one as a special case. Eigenmode extraction of the 
second case includes the constraint, that the center of mass and the 
rotations are fixed over the body's volume. 

The kinetic energy T and potential energy Epot are expressed as 
functions of the generalized coordinates. Preferably, the 
coordinates of the center of mass, the Eulerian angles and the 
amplitudes of the eigenmodes are chosen. Integration over the 
volume V of the structure describes the kinetic energy T 

where p denotes the density of mass of the structure and the dot 
differentiation with respect to time t. The notation using the 
rotation vector o associated with the rotated coordinate system 
condenses the notation while performing the integration: 

The first term of the kinetic energy is associated with the rigid body 
translation, where M stands for the total mass of the structure. As 
the center of mass has been chosen as reference point, this term is 
decoupled from the remaining motion. The rigid body rotations 
occurs in the second term. The matrix of moment of inertia of the 
undeformed s,?cture eundef has to be corrected, due to the 
deformation. The integration required for the correction matrix 
needs to be performed on each element separately. The third term 
describes the coupling of the eigenmodes with the rotation of the 
rigid body. The cross product operation which occurs in the matrix 
A h p  to be used with respect to each column vector of G. The 
kinetic energy due to the eigenmodes is considered in the last term. 
The mass matrix can be obtained directly from a FEM model of 
the structure by multiplication of the mass matrix of the FEM 
model with the eigenvectors describing the eigenmodes. 

Similarly, the matrix A and the correction term in the matrix of 
moment' of inertia e can be related to a FEM model of the structure. 
For this, the output of an FEM element has to be extended by terms 
of the form 

where gi stands for a component of the elements form function and 
xj for a component of the vector x' . Then, summation over the 
element outputs replaces the necessary integration. Furthermore, 
respecting the orthogonality of the eigenmodes and the constraints 
used for the eigenmode determination, simplifies these two 
matrices prior to integration. 

The potential energy consists of two terms: the mechanical 
deformation energy Eqot,def of the structure and the electrostatic 
energy Epofel associated with the voltages applied to the 
electrodes. 

The deformation energy Epot,defis of the form [6] 

where _KFEM is the total element stiffness matrix of the FEM 
model, consisting of the element stiffness matrix ICE and the stress 
stiffness matrix ?E, and _K the eigenmode stiffness matrix, obtained 
by multiplication of the total element stiffness matrix with the 
eigenvector matrix s i g e n .  If the model shall includes non-linear 
material effects, the eigenmode stiffness matrix becomes a function 
of the amplitudes of the eigenmodes. To make simulation fast this 
function should 1.: expressed in terms of analytical functions, 
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Fig. 2: modeshapes of 1st and 3rd considered eigenmode. the 2nd and 4th considered eigenmode is obtained by rotation of these two modes 
around the z-axis 

obtained either from analytical methods or by fitting stiffness 
matrix data from FEM simulations. 

The respective term in the Lagrange equations related to the 
electrical potential energy can be expressed as [I]: 

where Cy is the capacitance matrix of the multi-electrode structure 
and V is a column vector consisting of,the bias voltages on the 
electrodes. Similar to ~ the non-line& stiffness matrix, the 
capacitance matrix should be expressed in terms of analytical 
functions of the generalized coordinates, obtained either from 
analytical methods or by fitting capacitance data from BEM 
simulations. 

These voltages define, together with the corresponding current 
terms Iij, electrical interfaces of the marcomodel as required for the 
generalized Kirchoff equations. Hence the macromodel can easily 
be embedded into a electrical network simulator for system level 
simulation, combining the mechanical structure with the 
electronics. Due to the state depending capacitance matrix of the 
model, the capacitance currents Iij have an additional term: 

d dCii 
'0 =c,--<v; dt -v-$+-(v, dt -v j )= 

In most practical cases, in particular for switched capacitor 
implementations, the voltages applied to the electrodes are given 
and the electrical network is completely capacitive. Dynamics is 
only modeled in the mechanical part and the digital filtering 
operation of the electronic circuit, resulting in fast simulation times. 

Returning to the general structures with flexible mechanical 
suspension as defined above, the kinetic energy T and potential 
energy Epot are evaluated similarly. But an additional potential 
energy term has to be added to the two terms already discussed. 
The forces Fsus,i at the suspension points are represented in the 
Largrange equations as the partial derivative of an external energy 
Epot,ext with respect to the corresponding suspension displacement 
usUs,i. Since the forces as interface variables are needed in the 
systems equations, this energy is not needed to be evaluated. 

Again, the suspension force Fsus,i and coressponding displacement 
Usus,i define a mechanical interface which enables the marcomodel 
to be introduced in a network simulator based on generalized 
Kichoff equations. 

Setting up the Lagrange equations gives the marcornodel of the 
structure as a state space system with the generalized coordinates 
qv and their derivatives 4, as state variables. The model has two 
sorts of interfaces: mechanical ones, described by 
force/displacement pairs, and electrical ones described by 
voltage/current pairs. 

3. Free moveable plate 

The technique above is applied to the structure shown in Fig. 1. As 
already mentioned, the two sets of eight fixed electrodes are used to 
sense capacitively the two tilting degrees of freedom and the 
vertical translation during the first half period of the sampling time 

-7'"Depending on the filtered sense signal, a voltage pattern of 
fixed amplitude is applied to the same electrodes for balancing the 
plate during the second half sampling period T,. The applied 
voltage pattern is chosen to generate feedback forces at two fixed 
levels for each measured degree of freedom. As the feedback signal 
is quantized in time and amplitude, the system represents a typical 
C/A-modulator. 

The used motion configuration of the moveable plate consists of 
the three rigid body motions which are detected and 4 eigenmodes, 
thus 7 generalized coordinates. These eigenmodes were obtained 
from a FEM model of the plate using ANSYS. Fig. 2. shows the 
two mode shapes related to the 1st and 3rd considered eigenmodes. 
The 2nd and 4th eigenmodes are the similar shapes, but rotated 
around the z-axis to give the respective orthogonal modes. These 
eigenmodes were primarily chosen, since the signal due to the 1st 
and 2nd eigenmodes is in first order orthogonal to the detection 
signal of the rigid body motions, while the signals due to the 3rd 
and 4th ones align with the 2 tilting degrees of freedom. The 
eigenfrequencies are 97.6 kHz and 225.3 kHz respectively. While 
determining the mode shapes the additional side-conditions for a 
free moveable object were set, i.e. the translation and rotation over 
the body volume are zero. 

V v V 

Hence, the corresponding term in the expression for the kinetic 
energy disappears. Further, the thin, shell like form of the plate 
causes only displacements in the vertical direction during 
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Fig. 3: normalized spectra of the output signal of the CIA-modulator with respect to the 1st tilt mode for a sampling time 
a.) Ts = 1 ps and b.) Ts = 3.2 ps 

eigenmode analysis. As a consequence the complete matrix A in 
the expression for the kinetic energy vanishes. Similarly, all terms 
except two in the correction term for the matrix of moments of 
inertia evaluate to zero. The maximum relative modification of the 
matrix of moments of inertia due to these terms would be less than 
le-5. Therefore, they were neglected and the kinetic energy was 
finally retrieved from the matrix of moments of inertia of the 
undeformed structure and the mass matrix of the FEM model. 

The inner potential energy was related to the stiffness matrix of the 
FEM model. For the electrical potential energy, the capacitances 
were calculated at 2187 points in the space, defined by the 7 
generalized coordinates. The points lie within +20% of the 
maximal possible amplitude, i.e. the plate touching the electrodes, 
with respect to each generalized variable separately. By 
interpolation with polynomial basis functions of this capacitance 
data the electrical energy was obtained. 

Since the electrical network, which connected to the structure, 
ensures constant voltages at all electrodes (except a negligible 
settling time), only the capacitive network of the the structure itself 
has to be solved. 

The structure was first simulated for sampling period Trlps .  
While the spectrum of the vertical translation output signal was 
typically for a 2nd-order loop, the spectra with respect to the tilting 
modes is perturbed. This spectra of the 1st tilt mode, normalized to 
the square of the torque fed back, is shown in Fig. 3. Clearly, the 
negative tooth, due to the resonance of the 3rd and 4th eigenmode 
is visible. Since the detection signal of the vertical translation is 
orthogonal to all detection signals of the considered eigenmodes no 
such tooth affects the spectrum of the vertical translation. For 
similar reason, the 1st and 2nd eigenmodes aren't visible in the 
spectra of the tilt modes. The tooth indicates that the 3rd and 4th 
eigenmode is excited by the quantization noise. In this 'case the 
excitation is still small enough that the S/D-modulator doesn't 
overload. 

In Fig. 3b the same spectrum is shown but with the sampling time 
extended to Ts=3.2ps. Here, the excitation of the 3rd and 4th 
eigenmode overlaods the S/D-loop, i.e. the quantization noise 
becomes correlated with the quantizer input. As an effect, strong 
peaks occur in the spectrum. Further, the baseband noise floor rises 
by about 20 dB, thereby lowering the signal to noise ratio by the 
same amount. This results demonstrates the significance to model 
eigenmodes of mechanical structures for SD-loops, although this 
effect may be reduced by damping, which is not modeled here. 

' 

I 

Further simulation results show effects due to small second order 
coupling. An applied signal, with respect to the vertical translation, 
occurred damped by 60 dB in the signal of the tilt modes. Fig. 3. 
shows strong negative peaks, which are likely to be folded version 
of the tooth due to non-linear effects. 

4. Conclusion 

The results above demonstrate that modem sense architectures used 
in micromechanical, multielectrode structures require verification 
of the inherent signal processing. For this verification, system level 
simulation is inevitable, but will only be effective if reduced 
models of the structures are used. 

The described method to generate macromodels balances the need 
for sufficient model information to capture the major effects on the 
system inherent signal procesing with the required reduction of the 
model to ensure acceptable simulation times. Particularly, the 
consideration of eigenmodes of the structure in such macromodels 
has been shown as a requirement, since it influences significantly 
the behaviour of a UA-modulator. 

Realistic macromodels still require the inclusion of damping 
mechanisms and will be subject to further work. 
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